Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(10): 10G119, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399863

ABSTRACT

A multi-energy soft x-ray pin-hole camera based on the PILATUS3 100 K x-ray detector has recently been installed on the Madison Symmetric Torus. This photon-counting detector consists of a two-dimensional array of ∼100 000 pixels for which the photon lower-threshold cutoff energy E c can be independently set for each pixel. This capability allows the measurement of plasma x-ray emissivity in multiple energy ranges with a unique combination of spatial and spectral resolution and the inference of a variety of important plasma properties (e.g., T e, n Z, Z eff). The energy dependence of each pixel is calibrated for the 1.6-6 keV range by scanning individual trimbit settings, while the detector is exposed to fluorescence emission from Ag, In, Mo, Ti, V, and Zr targets. The resulting data for each line are then fit to a characteristic "S-curve" which determines the mapping between the 64 possible trimbit settings for each pixel. The statistical variation of this calibration from pixel-to-pixel was explored, and it was found that the discreteness of trimbit settings results in an effective threshold resolution of ΔE < 100 eV. A separate calibration was performed for the 4-14 keV range, with a resolution of ΔE < 200 eV.

2.
Phys Rev Lett ; 103(7): 076403, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19792668

ABSTRACT

We use thermal diffuse scattering of x rays to visualize the lens-shaped portions of the Fermi surface in metallic zinc. Our interpretation of the nature of the observed scattered intensity anomalies is supported by the incorporation of inelastic x-ray scattering measurements as well as ab initio calculations of the electronic structure and lattice dynamics. Our work demonstrates that thermal diffuse scattering complements well-established techniques and is a powerful tool in its own right for studying the shape of the Fermi surface through the associated electron-phonon coupling.

3.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 7): 759-68, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17582167

ABSTRACT

Radiation damage in macromolecular crystals is not suppressed even at 90 K. This is particularly true for covalent bonds involving an anomalous scatterer (such as bromine) at the 'peak wavelength'. It is shown that a series of absorption spectra recorded on a brominated RNA faithfully monitor the extent of cleavage. The continuous spectral changes during irradiation preserve an 'isosbestic point', each spectrum being a linear combination of 'zero' and 'infinite' dose spectra. This easily yields a good estimate of the partial occupancy of bromine at any intermediate dose. The considerable effect on the near-edge features in the spectra of the crystal orientation versus the beam polarization has also been examined and found to be in good agreement with a previous study. Any significant influence of the (C-Br bond/beam polarization) angle on the cleavage kinetics of bromine was also searched for, but was not detected. These results will be useful for standard SAD/MAD experiments and for the emerging 'radiation-damage-induced phasing' method exploiting both the anomalous signal of an anomalous scatterer and the 'isomorphous' signal resulting from its cleavage.


Subject(s)
Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Bromine/chemistry , Bromine/radiation effects , Kinetics , Potassium/chemistry , Potassium/radiation effects , RNA/chemistry , Scattering, Radiation , Spectrometry, Fluorescence , Spectrum Analysis, Raman , X-Ray Diffraction , X-Rays
4.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 3): 302-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17327667

ABSTRACT

The cryocooling of protein crystals to temperatures of around 100 K drastically reduces X-ray-induced radiation damage. The majority of macromolecular data collection is therefore performed at 100 K, yielding diffraction data of higher resolution and allowing structure determination from much smaller crystals. However, at third-generation synchrotron sources radiation damage at 100 K still limits the useful data obtainable from a crystal. For data collection at 15 K, realised by the use of an open-flow helium cryostat, a further reduction of radiation damage is expected. However, no systematic studies have been undertaken so far. In this present study, a total of 54 data sets have been collected from holoferritin and insulin crystals at 15 and 90 K in order to identify the effect of the lower data-collection temperature on the radiation damage. It is shown that data collection at 15 K has only a small positive effect for insulin crystals, whereas for holoferritin crystals radiation damage is reduced by 23% compared with data collection at 90 K.


Subject(s)
Crystallography, X-Ray/methods , Proteins/radiation effects , Animals , Crystallization , Ferritins/chemistry , Ferritins/radiation effects , Horses , Insulin/chemistry , Insulin/radiation effects , Proteins/chemistry , Swine , Temperature , X-Rays
5.
J Synchrotron Radiat ; 13(Pt 2): 120-30, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16495612

ABSTRACT

The PILATUS 1M detector is a hybrid pixel array detector with over one million pixels that operate in single photon counting mode. The detector, designed for macromolecular crystallography, is the largest pixel array detector currently in use at a synchrotron. It is a modular system consisting of 18 multichip modules covering an area of 21 cm x 24 cm. The design of the components as well as the manufacturing of the detector including the bump-bonding was performed at the Paul Scherrer Institute (PSI). The use of a single photon counting detector for protein crystallography requires detailed studies of the charge collection properties of the silicon sensor. The 18 modules are read out in parallel, leading to a full frame readout-time of 6.7 ms. This allows crystallographic data to be acquired in fine-varphi-slicing mode with continuous rotation of the sample. The detector was tested in several experiments at the protein crystallography beamline X06SA at the Swiss Light Source at PSI. Data were collected both in conventional oscillation mode using the shutter, as well as in a fine-varphi-slicing mode. After applying all the necessary corrections to data from a thaumatin crystal, the processing of the conventional data led to satisfactory merging R-factors of the order of 8.5%. This allows, for the first time, determination of a refined electron density map of a macromolecular biological crystal using a silicon pixel detector.


Subject(s)
Crystallography, X-Ray/instrumentation , Equipment Design , Proteins/chemistry , Silicon , Synchrotrons/instrumentation
6.
Phys Rev Lett ; 94(16): 164801, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15904233

ABSTRACT

We report a quantitative measurement of the full transverse coherence function of the 14.4 keV x-ray radiation produced by an undulator at the Swiss Light Source. An x-ray grating interferometer consisting of a beam splitter phase grating and an analyzer amplitude grating has been used to measure the degree of coherence as a function of the beam separation out to 30 microm. Importantly, the technique provides a model-free and spatially resolved measurement of the complex coherence function and is not restricted to high resolution detectors and small fields of view. The spatial characterization of the wave front has important applications in discovering localized defects in beam line optics.

7.
J Synchrotron Radiat ; 12(Pt 3): 261-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15840909

ABSTRACT

Cryocooled insulin and thaumatin crystals were irradiated in a series of alternating data collections and high-dose-rate exposures using either a vertically focused or vertically defocused beam. The main result is that the radiation damage is limited to the exposed region, which can be explained by the short range of the photoelectrons and the Auger electron cascade produced by light elements. Consequently, the unexposed angular range provides significantly improved data quality and electron density compared with previously exposed angular wedges of the crystal when a vertically focused beam is used, while no differences are observed between a fresh wedge and an exposed region for the vertically defocused beam. On the other hand, the focused beam provides higher I/sigma(I) ratios at high resolution than homogeneous sample illumination but also causes more rapid sample deterioration.


Subject(s)
Crystallography, X-Ray/methods , Freezing , Insulin/chemistry , Insulin/radiation effects , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Plant Proteins/chemistry , Plant Proteins/radiation effects , Crystallization , Protein Conformation/radiation effects
8.
J Synchrotron Radiat ; 7(Pt 5): 301-6, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-16609212

ABSTRACT

Synchrotron beam measurements were performed with a single-photon-counting pixel detector to investigate the influence of threshold settings on charge sharing. Improvement of image homogeneity by adjusting the threshold of each pixel individually was demonstrated. With a flat-field correction, the homogeneity could be improved. A measurement of the point spread function is reported.

9.
J Synchrotron Radiat ; 7(Pt 5): 340-7, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-16609218

ABSTRACT

A fixed-exit monochromator has been constructed for computed tomography (CT) studies at the Medical Beamline of the European Synchrotron Radiation Facility. A non-dispersive pair of bent Laue-type crystals is used, and the first crystal is water-cooled. The monochromator operates at energies from 18 to 90 keV, and the maximum width of the beam is 150 mm. The performance of the monochromator is studied with respect to the beam intensity and energy distributions, and a close agreement is found between the calculated and experimental results. The intensity is between 10(9) and 10(10) photons s(-1) mm(-2) under typical operating conditions. The harmonic content of a 25 keV beam is about 30% at the minimum wiggler gap of 25 mm (field 1.57 T) and decreases by an order of magnitude when the gap is increased to 60 mm (field 0.62 T). The experimental set-up for CT studies includes dose monitors, goniometers and translation stages for positioning and scanning the object, and a 432-element linear-array Ge detector. Examples from phantom studies and in vivo animal experiments are shown to illustrate the spatial resolution and contrast of the reconstructed images.

SELECTION OF CITATIONS
SEARCH DETAIL
...