Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 93(3): 1121-7, 1990 Jul.
Article in English | MEDLINE | ID: mdl-16667567

ABSTRACT

The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO(2) --> pyruvate --> acetyl-coenzyme A (C(3) --> C(2)) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C(3) --> C(2) metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO(2)-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH(14)CO(3) decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A.

2.
Plant Physiol ; 84(4): 1233-7, 1987 Aug.
Article in English | MEDLINE | ID: mdl-16665589

ABSTRACT

Carefully isolated intact spinach chloroplasts virtually free of contamination of other organelles effectively form beta-carotene from NaH(14)CO(3) or [U-(14)C]-3-phosphoglycerate (PGA) under photosynthetic conditions. The photosynthate pool formed in chloroplasts from 1 to 2 millimolar [U-(14)C]-3-PGA or 3 to 6 millimolar NaH(14)CO(3) was fully sufficient to supply beta-carotene synthesis with intermediates for about 1 hour at maximal rates of about 20 nanomoles (14)C incorporated per milligram chlorophyll per hour. Fatty acid synthesis remains, under these circumstances, in linear dependence to substrate concentrations with far lower activity. Isotopic dilution of the beta-carotene synthesis by adding unlabeled glyceraldehyde 3-phosphate, dihydroxyacetone-P, 3-PGA, 2-PGA, phosphoenolpyruvate, pyruvate, respectively, may be interpreted as a direct substrate flow from photosynthetically fixed CO(2) to isopentenyl pyrophosphate synthesizing system. Unlabeled acetate did not dilute beta-carotene synthesis. Fatty acid synthesis acted similarly with unlabeled substrates; but it also was diluted by unlabeled acetate. These results indicate a tight linkage of photosynthetic carbon fixation and plastid isoprenoid synthesis.

3.
Plant Physiol ; 76(2): 465-71, 1984 Oct.
Article in English | MEDLINE | ID: mdl-16663866

ABSTRACT

A probable carbon flow from the Calvin cycle to branched chain amino acids and lipids via phosphoenolpyruvate (PEP) and pyruvate was examined in spinach (Spinacia oleracea) chloroplasts. The interpendence of metabolic pathways in and outside chloroplasts as well as product and feedback inhibition were studied. It was shown that alanine, aromatic, and small amounts of branched chain amino acids were formed from bicarbonate in purified intact chloroplasts. Addition of PEP only favored formation of aromatic amino acids. Mechanisms of regulation remained unclear. Concentrations of PEP and pyruvate within the chloroplast impermeable space during photosynthetic carbon fixation were 15 times higher than in the reaction medium. A direct carbon flow to pyruvate was identified (0.1 micromoles per milligram chlorophyll per hour). Pyruvate was taken up by intact chloroplasts slowly, leading to the formation of lysine, alanine, valine, and leucine plus isoleucine (approximate ratios, 100-500:60-100:40-100:2-10). The K(m) for the formation of valine and leucine plus isoleucine was estimated to be 0.1 millimolar. Ten micromolar glutamate optimized the transamination reaction regardless of whether bicarbonate or pyruvate was being applied. Alanine and valine formation was enhanced by the addition of acetate to the reaction mixture. The enhancement probably resulted from an inhibition of pyruvate dehydrogenase by acetyl-S-coenzyme A formed from acetate, and resulting accumulation of hydroxyethylthiamine diphosphate and pyruvate. High concentrations of valine and isoleucine inhibited their own and each others synthesis and enhanced alanine formation. When pyruvate was applied, only amino acids were formed; when complemented with bicarbonate, fatty acids were formed as well. This is probably the result of a requirement of acetyl-S-coenzyme A-carboxylase for bicarbonate.

SELECTION OF CITATIONS
SEARCH DETAIL
...