Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 40(10): 2189-92, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26393696

ABSTRACT

We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to modeling laser damage, bridging the gap between fully ab-initio molecular dynamics approaches and empirical models. We demonstrate our method by modeling a femtosecond-pulse laser incident on a flat copper slab for a range of intensities.

2.
Rev Sci Instrum ; 86(5): 053303, 2015 May.
Article in English | MEDLINE | ID: mdl-26026518

ABSTRACT

A diagnostic tool for precise alignment of targets in laser-matter interactions based on confocal microscopy is presented. This device permits precision alignment of targets within the Rayleigh range of tight focusing geometries for a wide variety of target surface morphologies. This confocal high-intensity positioner achieves micron-scale target alignment by selectively accepting light reflected from a narrow range of target focal planes. Additionally, the design of the device is such that its footprint and sensitivity can be tuned for the desired chamber and experiment. The device has been demonstrated to position targets repeatably within the Rayleigh range of the Scarlet laser system at The Ohio State University, where use of the device has provided a marked increase in ion yield and maximum energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...