Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 184: 473-481, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28618279

ABSTRACT

Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha-1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha-1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions.


Subject(s)
Charcoal/chemistry , Soil/chemistry , Agriculture/standards , Biomass , Carbon/analysis , Charcoal/pharmacology , Hydrogen-Ion Concentration , Nitrogen/analysis , Glycine max/chemistry , Zea mays/chemistry
2.
J Environ Sci Health B ; 51(8): 497-507, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27153402

ABSTRACT

Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.


Subject(s)
Adsorption/drug effects , Biodegradation, Environmental , Charcoal/chemistry , Herbicides/chemistry , Panicum/chemistry , Pinus ponderosa/chemistry , Zea mays/chemistry , 2,4-Dichlorophenoxyacetic Acid , Atrazine , Colorado , Environmental Restoration and Remediation , Soil/chemistry , Soil Pollutants/chemistry
3.
Environ Sci Pollut Res Int ; 22(6): 4759-62, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25471725

ABSTRACT

Fluorescein diacetate (FDA) is commonly used to determine the hydrolyzing activity of microbial organisms in the soil. However, the costs of chemical reagents and time required to perform routine analysis of large number of samples by soil testing laboratories are limiting. Moreover, existing methods generate significant volumes of hazardous waste. In this context, this study was designed to determine the minimum amount of terminating chemical reagent needed to evaluate microbial hydrolyzing activity. The results showed that 0.2 mL of chloroform was enough to effectively stop the hydrolyzing activity in soil. This proposed terminating chemical reagent (0.2 mL chloroform) was also evaluated by comparing with the 10 mL of chloroform and 5 mL of methanol used in the Adam and Duncan method.


Subject(s)
Fluoresceins/chemistry , Soil Microbiology , Chloroform , Cost-Benefit Analysis , Hazardous Waste/analysis , Hydrolysis , Soil Pollutants/analysis
4.
Environ Sci Pollut Res Int ; 22(7): 5152-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25369917

ABSTRACT

Knowledge of how biochar impacts soil denitrification kinetics as well as the mechanisms of interactions is essential in order to better predict the nitrous oxide (N2O) mitigation capacity of biochar additions. This study had multiple experiments in which the effect of three biochar materials produced from corn stover (Zea mays L.), ponderosa pine wood residue (Pinus ponderosa Douglas ex Lawson and C. Lawson), switchgrass (Panicum virgatum L.), and their corresponding biomass materials (corn stover, ponderosa pine wood residue, and switchgrass) on cumulative N2O emissions and total denitrification in soils from two different landscape positions (crest and footslope) were studied under varying water-filled pore space (40, 70, and 90% WFPS). Cumulative N2O emissions were reduced by 30 to 70% in both crest and footslope soils. The effect of biochars and biomass treatments on cumulative N2O emissions and total denitrification were only observed at ≥40% WFPS. The denitrification enzyme activity (DEA) kinetic parameters, K s (half-saturation constant), and V max (maximum DEA rate) were both significantly reduced by biochar treatments, with reductions of 70-80% in footslope soil and 80-90 % in the crest soil. The activation energy (E a) and enthalpy of activation of DEA (ΔH) were both increased with biochar application. The trends in DEA rate constants (K s and V max) were correlated by the trends of thermodynamic parameters (activation energy E a and enthalpy of activation ΔH) for denitrifying enzyme activity (DEA). The rate constant V max/K s evaluated the capacity of biochars to mitigate the denitrification process. Denitrifying enzyme kinetic parameters can be useful in evaluating the ability of biochars to mitigate N2O gas losses from soil.


Subject(s)
Biomass , Charcoal , Denitrification , Soil/chemistry , Kinetics , Nitrous Oxide/chemistry , Panicum , Pinus ponderosa , Water/chemistry , Wood , Zea mays
5.
J Hazard Mater ; 279: 244-56, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25064262

ABSTRACT

The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N, and S with the help of enzymes is not well established. This study was designed to investigate the effect of different biomass conversion processes (microwave pyrolysis, carbon optimized gasification, and fast pyrolysis using electricity) on the composition and surface chemistry of biochar materials produced from corn stover (Zea mays L.), switchgrass (Panicum virgatum L.), and Ponderosa pine wood residue (Pinus ponderosa Lawson and C. Lawson) and determine the effect of biochars on mineralization of C, N, and S and associated soil enzymatic activities including esterase (fluorescein diacetate hydrolase, FDA), dehydrogenase (DHA), ß-glucosidase (GLU), protease (PROT), and aryl sulfatase (ARSUL) in two different soils collected from footslope (Brookings) and crest (Maddock) positions of a landscape. Chemical properties of biochar materials produced from different batches of gasification process were fairly consistent. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity, irrespective of biomass feedstock and pyrolytic process. The short term incubation study showed that biochar had negative effects on microbial activity (FDA and DHA) and some enzymes including ß-glucosidase and protease.


Subject(s)
Charcoal/chemistry , Soil Microbiology , Biomass , Carbon/chemistry , Enzymes/analysis , Microscopy, Electron, Scanning , Nitrogen/chemistry , Panicum/chemistry , Pinus/chemistry , Sulfur/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...