Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 50(6): 912-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19443592

ABSTRACT

UNLABELLED: We are developing a methodology for the noninvasive imaging of glucose transport in vivo with PET and (18)F-labeled 6-fluoro-6-deoxy-d-glucose ((18)F-6FDG), a tracer that is transported but not phosphorylated. To validate the method, we evaluated the biodistribution of (18)F-6FDG to test whether it is consistent with the known properties of glucose transport, particularly with regard to insulin stimulation of glucose transport. METHODS: Under glucose clamp conditions, rats were imaged at the baseline and under conditions of hyperinsulinemia. RESULTS: The images showed that the radioactivity concentration in skeletal muscle was higher in the presence of insulin than at the baseline. We also found evidence that the metabolism of (18)F-6FDG was negligible in several tissues. CONCLUSION: (18)F-6FDG is a valid tracer that can be used in in vivo transport studies. PET studies performed under glucose clamp conditions demonstrated that the uptake of nonphosphorylated glucose transport tracer (18)F-6FDG is sensitive to insulin stimulation.


Subject(s)
Deoxyglucose/analogs & derivatives , Fluorine Radioisotopes , Insulin/pharmacology , Muscle, Skeletal/metabolism , Animals , Deoxyglucose/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley
3.
Diabetes ; 57(1): 50-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17934142

ABSTRACT

OBJECTIVE: The deuterated water method uses the ratio of deuterium on carbons 5 and 2 (C5/C2) or 3 and 2 (C3/C2) to estimate the fraction of glucose derived from gluconeogenesis. The current studies determined whether C3 and C5 glucose enrichment is influenced by processes other than gluconeogenesis. RESEARCH DESIGN AND METHODS: Six nondiabetic subjects were infused with [3,5-(2)H(2)]glucose and insulin while glucose was clamped at approximately 5 mmol/l; the C5-to-C3 ratio was measured in the in UDP-glucose pool using nuclear magnetic resonance and the acetaminophen glucuronide method. RESULTS: Whereas the C5-to-C3 ratio of the infusate was 1.07, the ratio in UDP-glucose was <1.0 in all subjects both before (0.75 +/- 0.07) and during (0.67 +/- 0.05) the insulin infusion. CONCLUSIONS: These data indicate that the deuterium on C5 of glucose is lost more rapidly relative to the deuterium on C3. The decrease in the C5-to-C3 ratio could result from exchange of the lower three carbons of fructose-6-phosphate with unlabeled three-carbon precursors via the transaldolase reaction and/or selective retention of the C3 deuterium at the level of triosephosphate isomerase due to a kinetic isotope effect. After ingestion of (2)H(2)O, these processes would increase the enrichment of C5 and decrease the enrichment of C3, respectively, with the former causing an overestimation of gluconeogenesis using the C2-to-C5 ratio and the latter an underestimation using the C3-to-C2 ratio. Future studies will be required to determine whether the impact of these processes on the measurement of gluconeogenesis differs among the disease states being evaluated (e.g., diabetes or obesity).


Subject(s)
Blood Glucose/metabolism , C-Peptide/blood , Deuterium Oxide/metabolism , Gluconeogenesis , Glucose/chemistry , Glucose/metabolism , Insulin/blood , Female , Glucose Clamp Technique , Humans , Insulin/pharmacology , Male , Middle Aged , Reference Values , Tritium
4.
Am J Physiol Endocrinol Metab ; 293(1): E237-45, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17405828

ABSTRACT

Glucose transport rates are estimated noninvasively in physiological and pathological states by kinetic imaging using PET. The glucose analog most often used is (18)F-labeled 2FDG. Compared with glucose, 2FDG is poorly transported by intestine and kidney. We examined the possible use of 6FDG as a tracer of glucose transport. Lacking a hydroxyl at its 6th position, 6FDG cannot be phosphorylated as 2FDG is. Prior studies have shown that 6FDG competes with glucose for transport in yeast and is actively transported by intestine. Its uptake by muscle has been reported to be unresponsive to insulin, but that study is suspect. We found that insulin stimulated 6FDG uptake 1.6-fold in 3T3-L1 adipocytes and azide stimulated the uptake 3.7-fold in Clone 9 cells. Stimulations of the uptake of 3OMG, commonly used in transport assays, were similar, and the uptakes were inhibited by cyclochalasin B. Glucose transport is by GLUT1 and GLUT4 transporters in 3T3-L1 adipocyte and by the GLUT1 transporter in Clone 9 cells. Cytochalasin B inhibits those transporters. Rats were also imaged in vivo by PET using 6(18)FDG. There was no excretion of (18)F into the urinary bladder unless phlorizin, an inhibitor of active renal transport, was also injected. (18)F activity in brain, liver, and heart over the time of scanning reached a constant level, in keeping with the 6FDG being distributed in body water. In contrast, (18)F from 2(18)FDG was excreted in relatively large amounts into the bladder, and (18)F activity rose with time in heart and brain in accord with accumulation of 2(18)FDG-6-P in those organs. We conclude that 6FDG is actively transported by kidney as well as intestine and is insulin responsive. In trace quantity, it appears to be distributed in body water unchanged. These results provide support for its use as a valid tracer of glucose transport.


Subject(s)
Deoxyglucose/analogs & derivatives , Glucose/metabolism , Whole Body Imaging/methods , 3T3-L1 Cells , Animals , Biological Transport , Cells, Cultured , Deoxyglucose/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Male , Mice , Radioactive Tracers , Rats , Rats, Sprague-Dawley , Tritium/pharmacokinetics
5.
Am J Physiol Gastrointest Liver Physiol ; 288(6): G1135-43, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15637182

ABSTRACT

It is well established that subjects with liver cirrhosis are insulin resistant, but the contribution of defects in insulin secretion and/or action to glucose intolerance remains unresolved. Healthy individuals and subjects with liver cirrhosis were studied on two occasions: 1) an oral glucose tolerance test was performed, and 2) insulin secretion was inhibited and glucose was infused in a pattern and amount mimicking the systemic delivery rate of glucose after a carbohydrate meal. Insulin was concurrently infused to mimic a healthy postprandial insulin profile. Postabsorptive glucose concentrations were equal (5.36 +/- 0.12 vs. 5.40 +/- 0.25 mmol/l, P = 0.89), despite higher insulin (P < 0.01), C-peptide (P < 0.01), and free fatty acid (P = 0.05) concentrations in cirrhotic than in control subjects. Endogenous glucose release (EGR; 11.50 +/- 0.50 vs. 11.73 +/- 1.00 mumol.kg(-1).min(-1), P = 0.84) and the contribution of gluconeogenesis to EGR (6.60 +/- 0.47 vs. 6.28 +/- 0.64 mumol.kg(-1).min(-1), P = 0.70) were unaltered by cirrhosis. A minimal model recently developed for the oral glucose tolerance test demonstrated an impaired insulin sensitivity index (P < 0.05), whereas the beta-cell response to glucose was unaltered (P = 0.72). During prandial glucose and insulin infusions, the integrated glycemic response was greater in cirrhotic than in control subjects (P < 0.05). EGR decreased promptly and comparably in both groups, but glucose disappearance was insufficient at the prevailing glucose concentration (P < 0.05). Moreover, identical rates of [3-(3)H]glucose infusion produced higher tracer concentrations in cirrhotic than in control subjects (P < 0.05), implying a defect in glucose uptake. In conclusion, carbohydrate intolerance in liver cirrhosis is determined by insulin resistance and the ability of glucose to stimulate insulin secretion. During prandial glucose and insulin concentrations, EGR suppression was unaltered, but glucose uptake was impaired, which demonstrates that intolerance can be ascribed to a defect in glucose uptake, rather than abnormalities in glucose production or beta-cell function. Although insulin secretion ameliorates glucose intolerance, impaired glucose uptake during physiological glucose and insulin concentrations produces marked and sustained hyperglycemia, despite concurrent abnormalities in glucose production or insulin secretion.


Subject(s)
Carbohydrate Metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin/metabolism , Insulin/pharmacology , Liver Cirrhosis/physiopathology , Case-Control Studies , Gluconeogenesis/physiology , Glucose/pharmacokinetics , Glucose Tolerance Test , Humans , Hyperglycemia/physiopathology , Insulin Secretion , Male , Middle Aged
6.
Am J Physiol Endocrinol Metab ; 286(1): E102-10, 2004 Jan.
Article in English | MEDLINE | ID: mdl-12965873

ABSTRACT

Excess cortisol has been demonstrated to impair hepatic and extrahepatic insulin action. To determine whether glucose effectiveness and, in terms of endogenous glucose release (EGR), gluconeogenesis, also are altered by hypercortisolemia, eight healthy subjects were studied after overnight infusion with hydrocortisone or saline. Glucose effectiveness was assessed by a combined somatostatin and insulin infusion protocol to maintain insulin concentration at basal level in the presence of prandial glucose infusions. Despite elevated insulin concentrations (P < 0.05), hypercortisolemia resulted in higher glucose (P < 0.05) and free fatty acid concentrations (P < 0.05). Furthermore, basal insulin concentrations were higher during hydrocortisone than during saline infusion (P < 0.01), indicating the presence of steroid-induced insulin resistance. Postabsorptive glucose production (P = 0.64) and the fractional contribution of gluconeogenesis to EGR (P = 0.33) did not differ on the two study days. During the prandial glucose infusion, the integrated glycemic response above baseline was higher in the presence of hydrocortisone than during saline infusion (P < 0.05), implying a decrease in net glucose effectiveness (4.42 +/- 0.52 vs. 6.65 +/- 0.83 ml.kg-1.min-1; P < 0.05). To determine whether this defect is attributable to an impaired ability of glucose to suppress glucose production, to stimulate its own uptake, or both, glucose turnover and "hot" (labeled) indexes of glucose effectiveness (GE) were calculated. Hepatic GE was lower during cortisol than during saline infusion (2.39 +/- 0.24 vs. 3.82 +/- 0.51 ml.kg-1.min-1; P < 0.05), indicating a defect in the ability of glucose to restrain its own production. In addition, in the presence of excess cortisol, glucose disappearance was inappropriate for the prevailing glucose concentration, implying a decrease in glucose clearance (P < 0.05). The decrease in glucose clearance was confirmed by the higher increment in [3-3H]glucose during hydrocortisone than during saline infusion (P < 0.05), despite the administration of identical tracer infusion rates. In conclusion, short-term hypercortisolemia in healthy individuals with normal beta-cell function decreases insulin action but does not alter rates of EGR and gluconeogenesis. In addition, cortisol impairs the ability of glucose to suppress its own production, which due to accumulation of glucose in the glucose space results in impaired peripheral glucose clearance. These results suggest that cortisol excess impairs glucose tolerance by decreasing both insulin action and glucose effectiveness.


Subject(s)
Blood Glucose/metabolism , Gluconeogenesis/physiology , Hydrocortisone/blood , Insulin Resistance/physiology , Insulin/blood , Adult , Fatty Acids, Nonesterified/blood , Female , Glucose Tolerance Test , Humans , Male , Models, Biological , Postprandial Period/physiology , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...