Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 605(7909): 256-261, 2022 05.
Article in English | MEDLINE | ID: mdl-35546193

ABSTRACT

The adiabatic theorem, a corollary of the Schrödinger equation, manifests itself in a profoundly different way in non-Hermitian arrangements, resulting in counterintuitive state transfer schemes that have no counterpart in closed quantum systems. In particular, the dynamical encirclement of exceptional points (EPs) in parameter space has been shown to lead to a chiral phase accumulation, non-adiabatic jumps and topological mode conversion1-8. Recent theoretical studies, however, have shown that contrary to previously established demonstrations, this behaviour is not strictly a result of winding around a non-Hermitian degeneracy9. Instead, it seems to be mostly attributed to the non-trivial landscape of the Riemann surfaces, sometimes because of the presence of an EP in the vicinity9-11. Here, in an effort to bring this counterintuitive aspect of non-Hermitian systems to light and confirm this hypothesis, we provide a set of experiments to directly observe the field evolution and chiral state conversion in an EP-excluding cycle in a slowly varying non-Hermitian system. To do so, a versatile yet unique fibre-based photonic emulator is realized that utilizes the polarization degrees of freedom in a quasi-common-path single-ring arrangement. Our observations may open up new avenues for light manipulation and state conversion, as well as providing a foundation for understanding the intricacies of the adiabatic theorem in non-Hermitian systems.

2.
Nature ; 576(7785): 70-74, 2019 12.
Article in English | MEDLINE | ID: mdl-31802015

ABSTRACT

Gyroscopes are essential to many diverse applications associated with navigation, positioning and inertial sensing1. In general, most optical gyroscopes rely on the Sagnac effect-a relativistically induced phase shift that scales linearly with the rotational velocity2,3. In ring laser gyroscopes (RLGs), this shift manifests as a resonance splitting in the emission spectrum, which can be detected as a beat frequency4. The need for ever more precise RLGs has fuelled research activities aimed at boosting the sensitivity of RLGs beyond the limits dictated by geometrical constraints, including attempts to use either dispersive or nonlinear effects5-8. Here we establish and experimentally demonstrate a method using non-Hermitian singularities, or exceptional points, to enhance the Sagnac scale factor9-13. By exploiting the increased rotational sensitivity of RLGs in the vicinity of an exceptional point, we enhance the resonance splitting by up to a factor of 20. Our results pave the way towards the next generation of ultrasensitive and compact RLGs and provide a practical approach for the development of other classes of integrated sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...