Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(17): 20987-20997, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079779

ABSTRACT

To increase the energy density of today's lithium batteries, it is necessary to develop an anode with higher energy density than graphite or carbon/silicon composites. Hence, research on metallic lithium has gained a steadily increasing momentum. However, the severe safety issues and poor Coulombic efficiency of this highly reactive metal hinder its practical application in lithium-metal batteries (LMBs). Herein, the development of an artificial interphase is reported to enhance the reversibility of the lithium stripping/plating process and suppress the parasitic reactions with the liquid organic carbonate-based electrolyte. This artificial interphase is spontaneously formed by an alloying reaction-based coating, forming a stable inorganic/organic hybrid interphase. The accordingly modified lithium-metal electrodes provide substantially improved cycle life to symmetric Li||Li cells and high-energy Li||LiNi0.8Co0.1Mn0.1O2 cells. For these LMBs, 7 µm thick lithium-metal electrodes have been employed while applying a current density of 1.0 mA cm-2, thus highlighting the great potential of this tailored interphase.

2.
ChemSusChem ; 15(22): e202201320, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36169208

ABSTRACT

In the market for next-generation energy storage, lithium-sulfur (Li-S) technology is one of the most promising candidates due to its high theoretical specific energy and cost-efficient ubiquitous active materials. In this study, this cell system was combined with a cost-efficient sustainable solvent-free electrode dry-coating process (DRYtraec®). So far, this process has been only feasible with polytetrafluoroethylene (PTFE)-based binders. To increase the sustainability of electrode processing and to decrease the undesired fluorine content of Li-S batteries, a renewable, biodegradable, and fluorine-free polypeptide was employed as a binder for solvent-free electrode manufacturing. The yielded sulfur/carbon dry-film cathodes were electrochemically evaluated under lean electrolyte conditions at coin and pouch cell level, using the state-of-the-art 1,2-dimethoxyethane/1,3-dioxolane electrolyte (DME/DOL) as well as the sparingly polysulfide-solvating electrolytes hexylmethylether (HME)/DOL and tetramethylene sulfone/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TMS/TTE). These results demonstrated that the PTFE binder can be replaced by the biodegradable sericin as the cycle stability and performance of the cathodes was retained.


Subject(s)
Lithium , Sulfur , Lithium/chemistry , Solvents , Electrodes , Sulfur/chemistry , Electrolytes/chemistry , Polytetrafluoroethylene
SELECTION OF CITATIONS
SEARCH DETAIL
...