Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2354, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149730

ABSTRACT

Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.


Subject(s)
Daphnia/growth & development , Daphnia/metabolism , Oxidative Stress , Animals , Daphnia/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Longevity , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Reactive Oxygen Species/metabolism
2.
Aging (Albany NY) ; 8(2): 402-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26978617

ABSTRACT

The ability to appropriately respond to proteotoxic stimuli is a major determinant of longevity and involves induction of various heat shock response (HSR) genes, which are essential to cope with cellular and organismal insults throughout lifespan. The activity of NAD+-dependent deacetylase Sir2, originally discovered in yeast, is known to be essential for effective HSR and longevity. Our previous work on HSR inDaphnia pulicaria indicated a drastic reduction of the HSR in older organisms. In this report we investigate the role of Sir2 in regulating HSR during the lifespan of D. pulicaria. We cloned Daphnia Sir2 open reading frame (ORF) to characterize the enzyme activity and confirmed that the overall function of Sir2 was conserved in Daphnia. The Sir2 mRNA levels increased while the enzyme activity declined with age and considering that Sir2 activity regulates HSR, this explains the previously observed age-dependent decline in HSR. Finally, we tested the effect of Sir2 knockdown throughout adult life by using our new RNA interference (RNAi) method by feeding. Sir2 knockdown severely reduced both the median lifespan as well as significantly increased mortality following heat shock. Our study provides the first characterization and functional study of Daphnia Sir2.


Subject(s)
Aging/physiology , Daphnia/physiology , Heat-Shock Response/physiology , Longevity/physiology , Sirtuin 2/metabolism , Animals , Blotting, Western , Gene Knockdown Techniques , Reverse Transcriptase Polymerase Chain Reaction
3.
BMC Biotechnol ; 15: 91, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446824

ABSTRACT

BACKGROUND: RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression. A microinjection method for gene knockdown by RNAi has been described but the need for highly specialized equipment as well as technical expertise limits the wider application of this technique. In addition to being expensive and technically challenging, microinjections can only target genes expressed during embryonic stages, thus making it difficult to achieve effective RNAi in adult organisms. RESULTS: In our present study we present a bacterial feeding method for RNAi in Daphnia. We used a melanic Daphnia species (Daphnia melanica) that exhibits dark pigmentation to target phenoloxidase, a key enzyme in the biosynthesis of melanin. We demonstrate that our RNAi method results in a striking phenotype and that the phenoloxidase mRNA expression and melanin content, as well as survival following UV insults, are diminished as a result of RNAi. CONCLUSIONS: Overall, our results establish a new method for RNAi in Daphnia that significantly advances further use of Daphnia as a model organism for functional genomics studies. The method we describe is relatively simple and widely applicable for knockdown of a variety of genes in adult organisms.


Subject(s)
Daphnia/genetics , Gene Knockdown Techniques/methods , Models, Biological , RNA Interference , Animals , Daphnia/microbiology , Escherichia coli/genetics , Melanins/metabolism , Monophenol Monooxygenase/metabolism
4.
PLoS One ; 10(5): e0127196, 2015.
Article in English | MEDLINE | ID: mdl-25962144

ABSTRACT

Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.


Subject(s)
Aging/genetics , Arthropod Proteins/genetics , Daphnia/genetics , Telomerase/genetics , Telomere Shortening , Telomere/chemistry , Amino Acid Sequence , Animals , Cell Division , Cellular Senescence/genetics , Female , Gene Expression Regulation , Longevity/genetics , Male , Molecular Sequence Data , Repetitive Sequences, Nucleic Acid , Sequence Alignment
5.
Mech Ageing Dev ; 139: 1-10, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24814302

ABSTRACT

The longevity of an organism is directly related to its ability to effectively cope with cellular stress. Heat shock response (HSR) protects the cells against accumulation of damaged proteins after exposure to elevated temperatures and also in aging cells. To understand the role of Hsp70 in regulating life span of Daphnia, we examined the expression of Hsp70 in two ecotypes that exhibit strikingly different life spans. Daphnia pulicaria, the long lived ecotype, showed a robust Hsp70 induction as compared to the shorter lived Daphnia pulex. Interestingly, the short-lived D. pulex isolates showed no induction of Hsp70 at the mid point in their life span. In contrast to this, the long-lived D. pulicaria continued to induce Hsp70 expression at an equivalent age. We further show that the Hsp70 expression was induced at transcriptional level in response to heat shock. The transcription factor responsible for Hsp70 induction, heat shock factor-1 (HSF-1), although present in aged organisms did not exhibit DNA-binding capability. Thus, the decline of Hsp70 induction in old organisms could be attributed to a decline in HSF-1's DNA-binding activity. These results for the first time, present a molecular analysis of the relationship between HSR and life span in Daphnia.


Subject(s)
Arthropod Proteins/biosynthesis , Daphnia/metabolism , Gene Expression Regulation/physiology , HSP70 Heat-Shock Proteins/biosynthesis , Longevity/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...