Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
EMBO Rep ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769419

ABSTRACT

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.

2.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360943

ABSTRACT

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Subject(s)
Insulin Resistance , Intermittent Fasting , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism , Insulin Resistance/genetics , Obesity/genetics , Obesity/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Weight Loss
3.
Mol Metab ; 79: 101855, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128827

ABSTRACT

OBJECTIVE: Retinol saturase (RetSat) is an endoplasmic reticulum-localized oxidoreductase highly expressed in organs involved in lipid metabolism such as white (WAT) and brown adipose tissue (BAT). Cold exposure was shown to increase RETSAT protein in BAT but its relevance for non-shivering thermogenesis, a process with beneficial effects on metabolic health, is unknown. METHODS: We analyzed the regulation of RetSat expression in white and brown adipocytes and different murine adipose tissue depots upon ß-adrenergic stimulation and cold exposure. RetSat function during the differentiation and ß-adrenergic stimulation of brown adipocytes was dissected by loss-of-function experiments. Mice with BAT-specific deletion of RetSat were generated and exposed to cold. Gene expression in human WAT was analyzed and the effect of RetSat depletion on adipocyte lipolysis investigated. RESULTS: We show that cold exposure induces RetSat expression in both WAT and BAT of mice via ß-adrenergic signaling. In brown adipocytes, RetSat has minor effects on differentiation but is required for maximal thermogenic gene and protein expression upon ß-adrenergic stimulation and mitochondrial respiration. In mice, BAT-specific deletion of RetSat impaired acute but not long-term adaptation to cold exposure. RetSat expression in subcutaneous WAT of humans correlates with the expression of genes related to mitochondrial function. Mechanistically, we found that RetSat depletion impaired ß-agonist-induced lipolysis, a major regulator of thermogenic gene expression in adipocytes. CONCLUSIONS: Thus, RetSat expression is under ß-adrenergic control and determines thermogenic capacity of brown adipocytes and acute cold tolerance in mice. Modulating RetSat activity may allow for therapeutic interventions towards pathologies with inadequate metabolic activity.


Subject(s)
Lipolysis , Vitamin A , Mice , Humans , Animals , Vitamin A/metabolism , Adrenergic Agents/metabolism , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism , Obesity/metabolism
4.
Cell Rep ; 42(7): 112739, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37405919

ABSTRACT

The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.


Subject(s)
Drosophila Proteins , Repressor Proteins , Ribosomes , Sugars , Animals , Mice , Drosophila/metabolism , Drosophila Proteins/metabolism , Ribosomes/metabolism , Sugars/metabolism , Transcription Factors/metabolism , Repressor Proteins/metabolism
5.
Redox Biol ; 59: 102592, 2023 02.
Article in English | MEDLINE | ID: mdl-36586222

ABSTRACT

INTRODUCTION: Selenium (Se) is an essential trace element that exerts its effects mainly as the proteinogenic amino acid selenocysteine within a small set of selenoproteins. Among all family members, selenoprotein P (SELENOP) constitutes a particularly interesting protein as it serves as a biomarker and serum Se transporter from liver to privileged tissues. SELENOP expression is tightly regulated by dietary Se intake, inflammation, hypoxia and certain substances, but a systematic drug screening has hitherto not been performed. METHODS: A compound library of 1861 FDA approved clinically relevant drugs was systematically screened for interfering effects on SELENOP expression in HepG2 cells using a validated ELISA method. Dilution experiments were conducted to characterize dose-responses. A most potent SELENOP inhibitor was further characterized by RNA-seq analysis to assess effect-associated biochemical pathways. RESULTS: Applying a 2-fold change threshold, 236 modulators of SELENOP expression were identified. All initial hits were replicated as biological triplicates and analyzed for effects on cell viability. A set of 38 drugs suppressed SELENOP expression more than three-fold, among which were cancer drugs, immunosuppressants, anti-infectious drugs, nutritional supplements and others. Considering a 90% cell viability threshold, resveratrol, vidofludimus, and antimony potassium-tartrate were the most potent substances with suppressive effects on extracellular SELENOP concentrations. Resveratrol suppressed SELENOP levels dose-dependently in a concentration range from 0.8 µM to 50.0 µM, without affecting cell viability, along with strong effects on key genes controlling metabolic pathways and vesicle trafficking. CONCLUSION: The results highlight an unexpected direct effect of the plant stilbenoid resveratrol, known for its antioxidative and health-promoting effects, on the central Se transport protein. The suppressive effects on SELENOP may increase liver Se levels and intracellular selenoprotein expression, thereby conferring additional protection to hepatocytes at the expense of systemic Se transport. Further physiological effects from this interaction require analyses in vivo and by clinical studies.


Subject(s)
Selenium , Selenoprotein P , Selenoprotein P/genetics , Resveratrol/pharmacology , Drug Evaluation, Preclinical , Liver/metabolism , Selenoproteins/genetics , Selenium/metabolism
6.
J Lipid Res ; 63(10): 100268, 2022 10.
Article in English | MEDLINE | ID: mdl-36030930

ABSTRACT

Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that hepatic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepatocytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel crosstalk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.


Subject(s)
Liver , Vitamin A , Mice , Animals , Vitamin A/metabolism , Liver/metabolism , Insulin/metabolism , Tretinoin/pharmacology , Glucose/metabolism
7.
J Biol Chem ; 298(9): 102287, 2022 09.
Article in English | MEDLINE | ID: mdl-35868560

ABSTRACT

The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability.


Subject(s)
Forkhead Box Protein O1 , Homeostasis , Liver Glycogen , Liver , Tumor Suppressor Protein p53 , Animals , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Deletion , Glucose/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Mice , Triglycerides/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
9.
Front Genet ; 13: 913030, 2022.
Article in English | MEDLINE | ID: mdl-35734423

ABSTRACT

Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.

10.
Metabolites ; 12(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35736449

ABSTRACT

KIAA1363, annotated as neutral cholesterol ester hydrolase 1 (NCEH1), is a member of the arylacetamide deacetylase (AADAC) protein family. The name-giving enzyme, AADAC, is known to hydrolyze amide and ester bonds of a number of xenobiotic substances, as well as clinical drugs and of endogenous lipid substrates such as diglycerides, respectively. Similarly, KIAA1363, annotated as the first AADAC-like protein, exhibits enzymatic activities for a diverse substrate range including the xenobiotic insecticide chlorpyrifos oxon and endogenous substrates, acetyl monoalkylglycerol ether, cholesterol ester, and retinyl ester. Two independent knockout mouse models have been generated and characterized. However, apart from reduced acetyl monoalkylglycerol ether and cholesterol ester hydrolase activity in specific tissues and cell types, no gross-phenotype has been reported. This raises the question of its physiological role and whether it functions as drug detoxifying enzyme and/or as hydrolase/lipase of endogenous substrates. This review delineates the current knowledge about the structure, function and of the physiological role of KIAA1363, as evident from the phenotypical changes inflicted by pharmacological inhibition or by silencing as well as knockout of KIAA1363 gene expression in cells, as well as mouse models, respectively.

11.
Cell Mol Life Sci ; 79(6): 326, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35635656

ABSTRACT

Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity.


Subject(s)
Signal Transduction , Tumor Suppressor Protein p53 , Carcinoma, Hepatocellular/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Humans , Liver Neoplasms/metabolism , Nutrients , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Nutrients ; 14(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35334893

ABSTRACT

Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.


Subject(s)
Retinoids , Vitamin A , Animals , Homeostasis , Humans , Liver/metabolism , Mice , Retinoids/metabolism , Tretinoin/metabolism
13.
Cardiovasc Res ; 118(11): 2488-2505, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34061169

ABSTRACT

AIMS: Heart failure (HF) is characterized by an overactivation of ß-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, ß-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS: Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION: This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.


Subject(s)
Catecholamines , Heart Failure , Adipose Tissue/metabolism , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Animals , Catecholamines/metabolism , Lipase/genetics , Lipase/metabolism , Lipolysis , Male , Mice , Phenylurea Compounds
14.
Diabetologia ; 65(3): 528-540, 2022 03.
Article in English | MEDLINE | ID: mdl-34846543

ABSTRACT

AIMS/HYPOTHESIS: Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS: Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS: Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION: WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.


Subject(s)
Diet, High-Fat , Haploinsufficiency , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Thermogenesis/genetics , WT1 Proteins/genetics , WT1 Proteins/metabolism
15.
Diabetologia ; 64(12): 2829-2842, 2021 12.
Article in English | MEDLINE | ID: mdl-34537857

ABSTRACT

AIMS/HYPOTHESIS: The impact of diabetic pregnancy has been investigated extensively regarding offspring metabolism; however, little is known about the influence on the heart. We aimed to characterise the effects of a diabetic pregnancy on male adult offspring cardiac health after feeding a high-fat diet in an established transgenic rat model. METHODS: We applied our rat model for maternal type 2 diabetes characterised by maternal insulin resistance with hyperglycaemia and hyperinsulinaemia. Diabetes was induced preconceptionally via doxycycline-induced knock down of the insulin receptor in transgenic rats. Male wild-type offspring of diabetic and normoglycaemic pregnancies were raised by foster mothers, followed up into adulthood and subgroups were challenged by a high-fat diet. Cardiac phenotype was assessed by innovative speckle tracking echocardiography, circulating factors, immunohistochemistry and gene expression in the heart. RESULTS: When feeding normal chow, we did not observe differences in cardiac function, gene expression and plasma brain natriuretic peptide between adult diabetic or normoglycaemic offspring. Interestingly, when being fed a high-fat diet, adult offspring of diabetic pregnancy demonstrated decreased global longitudinal (-14.82 ± 0.59 vs -16.60 ± 0.48%) and circumferential strain (-23.40 ± 0.57 vs -26.74 ± 0.34%), increased relative wall thickness (0.53 ± 0.06 vs 0.37 ± 0.02), altered cardiac gene expression, enlarged cardiomyocytes (106.60 ± 4.14 vs 87.94 ± 1.67 µm), an accumulation of immune cells in the heart (10.27 ± 0.30 vs 6.48 ± 0.48 per fov) and higher plasma brain natriuretic peptide levels (0.50 ± 0.12 vs 0.12 ± 0.03 ng/ml) compared with normoglycaemic offspring on a high-fat diet. Blood pressure, urinary albumin, blood glucose and body weight were unaltered between groups on a high-fat diet. CONCLUSIONS/INTERPRETATION: Diabetic pregnancy in rats induces cardiac dysfunction, left ventricular hypertrophy and altered proinflammatory status in adult offspring only after a high-fat diet. A diabetic pregnancy itself was not sufficient to impair myocardial function and gene expression in male offspring later in life. This suggests that a postnatal high-fat diet is important for the development of cardiac dysfunction in rat offspring after diabetic pregnancy. Our data provide evidence that a diabetic pregnancy is a novel cardiac risk factor that becomes relevant when other challenges, such as a high-fat diet, are present.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Diseases , Prenatal Exposure Delayed Effects , Animals , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Female , Fetal Development , Male , Myocytes, Cardiac , Pregnancy , Rats , Rats, Sprague-Dawley , Risk Factors
16.
Diabetes ; 70(9): 1985-1999, 2021 09.
Article in English | MEDLINE | ID: mdl-34226282

ABSTRACT

Adipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a "zeitgeber" aligning the clock in AT with the external time, but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated a transcriptional-dependent mechanism of this regulation. We analyzed gene expression in subcutaneous AT (SAT) of obese subjects collected before and after the hyperinsulinemic-euglycemic clamp or control saline infusion (SC). The expressions of core clock genes PER2, PER3, and NR1D1 in SAT were differentially changed upon insulin and saline infusion, suggesting insulin-dependent clock regulation. In human stem cell-derived adipocytes, mouse 3T3-L1 cells, and AT explants from mPer2Luc knockin mice, insulin induced a transient increase of the Per2 mRNA and protein expression, leading to the phase shift of circadian oscillations, with similar effects for Per1 Insulin effects were dependent on the region between -64 and -43 in the Per2 promoter but not on CRE and E-box elements. Our results demonstrate that insulin directly regulates circadian clocks in AT and isolated adipocytes, thus representing a primary mechanism of feeding-induced AT clock entrainment.


Subject(s)
Adipose Tissue/drug effects , Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Insulin/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mice , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Promoter Regions, Genetic/drug effects
17.
Front Physiol ; 12: 659977, 2021.
Article in English | MEDLINE | ID: mdl-33790810

ABSTRACT

Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body's vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4's actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.

18.
Hypertension ; 77(1): 202-215, 2021 01.
Article in English | MEDLINE | ID: mdl-33249866

ABSTRACT

Several studies show an association of maternal diabetes during pregnancy with adverse offspring metabolic health. Other studies, however, suggest that this effect might be biased by obesity, which is independently associated with offspring metabolic disease and often coexistent to maternal diabetes. We performed a prospective study in a rat model to test the hypothesis that the burden of a diabetic pregnancy without obesity deteriorates metabolic health in male offspring. We generated maternal type 2 diabetes before conception that persisted during pregnancy by knockdown of the insulin receptor in small hairpin RNA-expressing transgenic rats. Male WT (wild type) offspring were followed up until adulthood and metabolically challenged by high-fat diet. Blood glucose was measured continuously via a telemetry device. Glucose and insulin tolerance tests were performed, and body composition was analyzed. Weight gain and glucose levels during adolescence and adulthood were similar in male offspring of diabetic and control pregnancies. Body weight and fat mass after high-fat diet, as well as glucose and insulin tolerance tests, were unaltered between male adult offspring of both groups. Glycemic control consisting of up to 49 000 individual glucose measures was comparable between both groups. Intrauterine exposure to maternal hyperglycemia and hyperinsulinemia without obesity had no impact on male offspring metabolic health in our model. We conclude that the intrauterine exposure itself does not represent a mechanism for fetal programming of diabetes and obesity in our model. Other maternal metabolic parameters during pregnancy, such as obesity, might impact long-term offspring metabolic health.


Subject(s)
Diabetes Mellitus/etiology , Diabetes, Gestational , Obesity/etiology , Animals , Blood Glucose/analysis , Body Composition , Diet, High-Fat , Disease Models, Animal , Female , Glucose Tolerance Test , Male , Pregnancy , Prenatal Exposure Delayed Effects , Prospective Studies , Rats , Rats, Sprague-Dawley
19.
J Biol Chem ; 295(50): 17158-17168, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33023907

ABSTRACT

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element-binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Gene Expression Regulation , Glucose/metabolism , Liver/metabolism , Protein Processing, Post-Translational , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , HEK293 Cells , Humans , Hydroxylation , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mice, Transgenic , Proline/genetics , Proline/metabolism
20.
Trends Pharmacol Sci ; 41(6): 418-427, 2020 06.
Article in English | MEDLINE | ID: mdl-32345479

ABSTRACT

Retinol saturase (RetSat) is an oxidoreductase that is expressed in metabolically active tissues and is highly regulated in conditions related to insulin resistance and type 2 diabetes. Thus far, RetSat has been implicated in adipocyte differentiation, hepatic glucose and lipid metabolism, macrophage function, vision, and the generation of reactive oxygen species (ROS). Although initially described to transform retinol to 13,14-dihydroretinol, a function it was named after, alternative enzymatic reactions may underlie some of these biological effects. We summarize recent findings and identify major obstacles standing in the way of its pharmacological exploitation, how we might overcome these, and discuss the therapeutic potential of modulating the activity of RetSat in alleviating human pathologies.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Humans , Mice , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...