Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38506714

ABSTRACT

The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.


Subject(s)
Electron Microscope Tomography , Extracellular Matrix , Biological Transport , Cell Movement , Cytosol , Electron Microscope Tomography/methods , Extracellular Matrix/ultrastructure
2.
Nat Struct Mol Biol ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316877

ABSTRACT

Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.

3.
PLoS Pathog ; 19(8): e1011562, 2023 08.
Article in English | MEDLINE | ID: mdl-37578957

ABSTRACT

Toscana virus is a major cause of arboviral disease in humans in the Mediterranean basin during summer. However, early virus-host cell interactions and entry mechanisms remain poorly characterized. Investigating iPSC-derived human neurons and cell lines, we found that virus binding to the cell surface was specific, and 50% of bound virions were endocytosed within 10 min. Virions entered Rab5a+ early endosomes and, subsequently, Rab7a+ and LAMP-1+ late endosomal compartments. Penetration required intact late endosomes and occurred within 30 min following internalization. Virus entry relied on vacuolar acidification, with an optimal pH for viral membrane fusion at pH 5.5. The pH threshold increased to 5.8 with longer pre-exposure of virions to the slightly acidic pH in early endosomes. Strikingly, the particles remained infectious after entering late endosomes with a pH below the fusion threshold. Overall, our study establishes Toscana virus as a late-penetrating virus and reveals an atypical use of vacuolar acidity by this virus to enter host cells.


Subject(s)
Sandfly fever Naples virus , Humans , Endocytosis , Endosomes/metabolism , Vacuoles , Virus Internalization , Hydrogen-Ion Concentration
4.
bioRxiv ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37546793

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) has an atypical immature particle morphology compared to other retroviruses. This indicates that these particles are formed in a way that is unique. Here we report the results of cryo-electron tomography (cryo-ET) studies of HTLV-1 virus-like particles (VLPs) assembled in vitro, as well as derived from cells. This work shows that HTLV-1 employs an unconventional mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature CA tubular arrays reveals that the primary stabilizing component in HTLV-1 is CA-NTD. Mutagenesis and biophysical analysis support this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the CA-CTD. These results are the first to provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus, and this helps explain why HTLV-1 particles are morphologically distinct.

5.
Sci Adv ; 9(3): eadd6495, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662867

ABSTRACT

Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform-specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Actins/metabolism , Actin-Related Protein 2-3 Complex/analysis , Actin-Related Protein 2-3 Complex/metabolism , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Protein Isoforms/metabolism
6.
Biochem Soc Trans ; 51(1): 87-99, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36695514

ABSTRACT

The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.


Subject(s)
Actin Cytoskeleton , Actins , Cryoelectron Microscopy , Actins/metabolism , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Microfilament Proteins , Cell Movement
7.
Curr Biol ; 32(11): 2375-2389.e6, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35508170

ABSTRACT

One hallmark of plant cells is their cell wall. They protect cells against the environment and high turgor and mediate morphogenesis through the dynamics of their mechanical and chemical properties. The walls are a complex polysaccharidic structure. Although their biochemical composition is well known, how the different components organize in the volume of the cell wall and interact with each other is not well understood and yet is key to the wall's mechanical properties. To investigate the ultrastructure of the plant cell wall, we imaged the walls of onion (Allium cepa) bulbs in a near-native state via cryo-focused ion beam milling (cryo-FIB milling) and cryo-electron tomography (cryo-ET). This allowed the high-resolution visualization of cellulose fibers in situ. We reveal the coexistence of dense fiber fields bathed in a reticulated matrix we termed "meshing," which is more abundant at the inner surface of the cell wall. The fibers adopted a regular bimodal angular distribution at all depths in the cell wall and bundled according to their orientation, creating layers within the cell wall. Concomitantly, employing homogalacturonan (HG)-specific enzymatic digestion, we observed changes in the meshing, suggesting that it is-at least in part-composed of HG pectins. We propose the following model for the construction of the abaxial epidermal primary cell wall: the cell deposits successive layers of cellulose fibers at -45° and +45° relative to the cell's long axis and secretes the surrounding HG-rich meshing proximal to the plasma membrane, which then migrates to more distal regions of the cell wall.


Subject(s)
Cellulose , Onions , Cell Wall/metabolism , Electron Microscope Tomography , Pectins/metabolism
8.
J Struct Biol ; 214(2): 107852, 2022 06.
Article in English | MEDLINE | ID: mdl-35351542

ABSTRACT

The potential of energy filtering and direct electron detection for cryo-electron microscopy (cryo-EM) has been well documented. Here, we assess the performance of recently introduced hardware for cryo-electron tomography (cryo-ET) and subtomogram averaging (STA), an increasingly popular structural determination method for complex 3D specimens. We acquired cryo-ET datasets of EIAV virus-like particles (VLPs) on two contemporary cryo-EM systems equipped with different energy filters and direct electron detectors (DED), specifically a Krios G4, equipped with a cold field emission gun (CFEG), Thermo Fisher Scientific Selectris X energy filter, and a Falcon 4 DED; and a Krios G3i, with a Schottky field emission gun (XFEG), a Gatan Bioquantum energy filter, and a K3 DED. We performed constrained cross-correlation-based STA on equally sized datasets acquired on the respective systems. The resulting EIAV CA hexamer reconstructions show that both systems perform comparably in the 4-6 Å resolution range based on Fourier-Shell correlation (FSC). In addition, by employing a recently introduced multiparticle refinement approach, we obtained a reconstruction of the EIAV CA hexamer at 2.9 Å. Our results demonstrate the potential of the new generation of energy filters and DEDs for STA, and the effects of using different processing pipelines on their STA outcomes.


Subject(s)
Electrons , Image Processing, Computer-Assisted , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed
9.
J Virol ; 96(5): e0214621, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019710

ABSTRACT

With more than 80 members worldwide, the Orthobunyavirus genus in the Peribunyaviridae family is a large genus of enveloped RNA viruses, many of which are emerging pathogens in humans and livestock. How orthobunyaviruses (OBVs) penetrate and infect mammalian host cells remains poorly characterized. Here, we investigated the entry mechanisms of the OBV Germiston (GERV). Viral particles were visualized by cryo-electron microscopy and appeared roughly spherical with an average diameter of 98 nm. Labeling of the virus with fluorescent dyes did not adversely affect its infectivity and allowed the monitoring of single particles in fixed and live cells. Using this approach, we found that endocytic internalization of bound viruses was asynchronous and occurred within 30 to 40 min. The virus entered Rab5a-positive (Rab5a+) early endosomes and, subsequently, late endosomal vacuoles containing Rab7a but not LAMP-1. Infectious entry did not require proteolytic cleavage, and endosomal acidification was sufficient and necessary for viral fusion. Acid-activated penetration began 15 to 25 min after initiation of virus internalization and relied on maturation of early endosomes to late endosomes. The optimal pH for viral membrane fusion was slightly below 6.0, and penetration was hampered when the potassium influx was abolished. Overall, our study provides real-time visualization of GERV entry into host cells and demonstrates the importance of late endosomal maturation in facilitating OBV penetration. IMPORTANCE Orthobunyaviruses (OBVs), which include La Crosse, Oropouche, and Schmallenberg viruses, represent a growing threat to humans and domestic animals worldwide. Ideally, preventing OBV spread requires approaches that target early stages of infection, i.e., virus entry. However, little is known about the molecular and cellular mechanisms by which OBVs enter and infect host cells. Here, we developed accurate, sensitive tools and assays to investigate the penetration process of GERV. Our data emphasize the central role of late endosomal maturation in GERV entry, providing a comprehensive overview of the early stages of an OBV infection. Our study also brings a complete toolbox of innovative methods to study each step of the OBV entry program in fixed and living cells, from virus binding and endocytosis to fusion and penetration. The information gained herein lays the foundation for the development of antiviral strategies aiming to block OBV entry.


Subject(s)
Endosomes , Orthobunyavirus , Virus Internalization , Animals , Cryoelectron Microscopy , Endosomes/virology , Mammals , Orthobunyavirus/physiology
10.
J Struct Biol ; 213(4): 107808, 2021 12.
Article in English | MEDLINE | ID: mdl-34742832

ABSTRACT

A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.


Subject(s)
Actin Cytoskeleton/ultrastructure , Computational Biology/methods , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Actin Cytoskeleton/metabolism , Animals , Cell Line, Tumor , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Deep Learning , Mice , Pseudopodia/metabolism , Pseudopodia/ultrastructure , Reproducibility of Results
11.
Viruses ; 13(9)2021 09 17.
Article in English | MEDLINE | ID: mdl-34578434

ABSTRACT

The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.


Subject(s)
HIV-1/physiology , Phytic Acid/metabolism , Retroviridae/physiology , Virus Assembly , Binding Sites , Capsid Proteins , Human Immunodeficiency Virus Proteins/metabolism , Mutation , Retroviridae Proteins/metabolism , Reverse Transcription , Rous sarcoma virus/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
12.
Nat Commun ; 12(1): 3226, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050170

ABSTRACT

Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.


Subject(s)
Capsid Proteins/metabolism , Capsid/ultrastructure , Phytic Acid/metabolism , Rous sarcoma virus/ultrastructure , Virus Assembly , Capsid/metabolism , Capsid Proteins/isolation & purification , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , Gene Knockout Techniques , HEK293 Cells , Humans , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Multimerization , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Rous sarcoma virus/pathogenicity , Rous sarcoma virus/physiology , Single Molecule Imaging , Transfection , Virus Release
13.
Nat Commun ; 12(1): 3058, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031387

ABSTRACT

De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.


Subject(s)
Brain/metabolism , Cell Movement/physiology , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cytoskeleton/metabolism , Proteostasis , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Brain/pathology , Female , Genes, Regulator , Haploinsufficiency , Heterozygote , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubules/metabolism , Mutation , Nervous System , Prosencephalon , Transcriptome
14.
Nat Commun ; 11(1): 6437, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33353942

ABSTRACT

The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.


Subject(s)
Actin-Related Protein 2-3 Complex/chemistry , Actin-Related Protein 2-3 Complex/ultrastructure , Electron Microscope Tomography , Fibroblasts/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Mice , Models, Molecular , NIH 3T3 Cells , Protein Conformation , Pseudopodia/metabolism
15.
J Struct Biol ; 212(3): 107633, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32987119

ABSTRACT

Cryo-electron microscopy (cryo-EM) of cellular specimens provides insights into biological processes and structures within a native context. However, a major challenge still lies in the efficient and reproducible preparation of adherent cells for subsequent cryo-EM analysis. This is due to the sensitivity of many cellular specimens to the varying seeding and culturing conditions required for EM experiments, the often limited amount of cellular material and also the fragility of EM grids and their substrate. Here, we present low-cost and reusable 3D printed grid holders, designed to improve specimen preparation when culturing challenging cellular samples directly on grids. The described grid holders increase cell culture reproducibility and throughput, and reduce the resources required for cell culturing. We show that grid holders can be integrated into various cryo-EM workflows, including micro-patterning approaches to control cell seeding on grids, and for generating samples for cryo-focused ion beam milling and cryo-electron tomography experiments. Their adaptable design allows for the generation of specialized grid holders customized to a large variety of applications.


Subject(s)
Cell Culture Techniques/methods , Cryoelectron Microscopy/methods , Specimen Handling/methods , Printing, Three-Dimensional , Reproducibility of Results , Workflow
16.
Cancers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326377

ABSTRACT

Janus kinase 2 (JAK2) and signal transducer and activator of transcription-5 (STAT5) play a key role in the pathogenesis of myeloproliferative neoplasms (MPN). In most patients, JAK2 V617F or CALR mutations are found and lead to activation of various downstream signaling cascades and molecules, including STAT5. We examined the presence and distribution of phosphorylated (p) STAT5 in neoplastic cells in patients with MPN, including polycythemia vera (PV, n = 10), essential thrombocythemia (ET, n = 15) and primary myelofibrosis (PMF, n = 9), and in the JAK2 V617F-positive cell lines HEL and SET-2. As assessed by immunohistochemistry, MPN cells displayed pSTAT5 in all patients examined. Phosphorylated STAT5 was also detected in putative CD34+/CD38- MPN stem cells (MPN-SC) by flow cytometry. Immunostaining experiments and Western blotting demonstrated pSTAT5 expression in both the cytoplasmic and nuclear compartment of MPN cells. Confirming previous studies, we also found that JAK2-targeting drugs counteract the expression of pSTAT5 and growth in HEL and SET-2 cells. Growth-inhibition of MPN cells was also induced by the STAT5-targeting drugs piceatannol, pimozide, AC-3-019 and AC-4-130. Together, we show that CD34+/CD38- MPN-SC express pSTAT5 and that pSTAT5 is expressed in the nuclear and cytoplasmic compartment of MPN cells. Whether direct targeting of pSTAT5 in MPN-SC is efficacious in MPN patients remains unknown.

17.
PLoS Pathog ; 16(1): e1008277, 2020 01.
Article in English | MEDLINE | ID: mdl-31986188

ABSTRACT

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.


Subject(s)
Equine Infectious Anemia/metabolism , Gene Products, gag/chemistry , Gene Products, gag/metabolism , Infectious Anemia Virus, Equine/physiology , Phytic Acid/metabolism , Virion/physiology , Amino Acid Sequence , Animals , Electron Microscope Tomography , Equine Infectious Anemia/virology , Gene Products, gag/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , HIV-1/ultrastructure , Horses , Host-Pathogen Interactions , Infectious Anemia Virus, Equine/chemistry , Infectious Anemia Virus, Equine/genetics , Infectious Anemia Virus, Equine/ultrastructure , Sequence Alignment , Virion/genetics , Virion/ultrastructure , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
18.
Adv Virus Res ; 105: 117-159, 2019.
Article in English | MEDLINE | ID: mdl-31522703

ABSTRACT

Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Retroviridae/ultrastructure , Virion/ultrastructure , Animals , Humans
19.
Curr Opin Struct Biol ; 58: 1-9, 2019 10.
Article in English | MEDLINE | ID: mdl-31005754

ABSTRACT

Cryo-electron tomography (cryo-ET) provides unprecedented insights into the molecular constituents of biological environments. In combination with an image processing method called subtomogram averaging (STA), detailed 3D structures of biological molecules can be obtained in large, irregular macromolecular assemblies or in situ, without the need for purification. The contextual meta-information these methods also provide, such as a protein's location within its native environment, can then be combined with functional data. This allows the derivation of a detailed view on the physiological or pathological roles of proteins from the molecular to cellular level. Despite their tremendous potential in in situ structural biology, cryo-ET and STA have been restricted by methodological limitations, such as the low obtainable resolution. Exciting progress now allows one to reach unprecedented resolutions in situ, ranging in optimal cases beyond the nanometer barrier. Here, I review current frontiers and future challenges in routinely determining high-resolution structures in in situ environments using cryo-ET and STA.


Subject(s)
Electron Microscope Tomography/methods , Signal-To-Noise Ratio , Humans , Image Processing, Computer-Assisted
20.
Proc Natl Acad Sci U S A ; 115(50): E11751-E11760, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478053

ABSTRACT

Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein-protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.


Subject(s)
Capsid/chemistry , Capsid/ultrastructure , Leukemia Virus, Murine/chemistry , Leukemia Virus, Murine/ultrastructure , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Electron Microscope Tomography , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/ultrastructure , HEK293 Cells , HIV-1/chemistry , HIV-1/genetics , HIV-1/ultrastructure , Humans , Leukemia Virus, Murine/genetics , Mice , Models, Molecular , Protein Domains , Protein Structure, Quaternary , Sequence Homology, Amino Acid , Virion/chemistry , Virion/genetics , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...