Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-31528353

ABSTRACT

BACKGROUND: Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS: Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS: We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.

2.
Article in English | MEDLINE | ID: mdl-29785273

ABSTRACT

BACKGROUND: Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. RESULTS: Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. CONCLUSIONS: Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei. Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.

3.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28916559

ABSTRACT

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Subject(s)
Cellulase/genetics , Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Trichoderma/enzymology , Cellulase/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Genes, Mating Type, Fungal , Membrane Transport Proteins/metabolism , Transcription, Genetic , Trichoderma/genetics , Trichoderma/growth & development
4.
PLoS One ; 12(8): e0182530, 2017.
Article in English | MEDLINE | ID: mdl-28809958

ABSTRACT

Changing light conditions, caused by the rotation of earth resulting in day and night or growth on the surface or within a substrate, result in considerably altered physiological processes in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glycoside hydrolase gene expression, especially cellulase expression was shown to be a target of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite cluster to be differentially regulated in light and darkness and by photoreceptors. We found that this cluster is involved in production of trichodimerol and that the two polyketide synthases of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide or bisorbibutenolide). Additionally, an indirect influence on production of the peptaibol antibiotic paracelsin was observed. The two polyketide synthetase genes as well as the monooxygenase gene of the cluster were found to be connected at the level of transcription in a positive feedback cycle in darkness, but negative feedback in light, indicating a cellular sensing and response mechanism for the products of these enzymes. The transcription factor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light dependent manner. Additionally, an interrelationship of this cluster with regulation of cellulase gene expression was detected. Hence the regulatory connection between primary and secondary metabolism appears more widespread than previously assumed, indicating a sophisticated distribution of resources either to degradation of substrate (feed) or to antagonism of competitors (fight), which is influenced by light.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/radiation effects , Light , Trichoderma/metabolism , Trichoderma/radiation effects , Transcription Factors/genetics , Transcription Factors/metabolism , Trichoderma/genetics
5.
BMC Genomics ; 15: 425, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24893562

ABSTRACT

BACKGROUND: Crosstalk between the signalling pathways responding to light-dark cycles and those triggering the adaptation of metabolism to the environment is known to occur in various organisms. This interrelationship of light response and nutrient sigalling is crucial for health and fitness. The tropical ascomycete Trichoderma reesei (syn. Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. Therefore we aimed to elucidate the interrelationship between nutrient and light signaling and how the light signal is transmitted to downstream pathways. RESULTS: We found that the targets of the light regulatory protein ENV1 in light show considerable overlap with those of the heterotrimeric G-protein components PhLP1, GNB1 and GNG1. Detailed investigation of a regulatory interrelationship of these components with ENV1 under conditions of early and late light response indicated a transcriptional mutual regulation between PhLP1 and ENV1, which appears to dampen nutrient signalling during early light response, presumably to free resources for protective measures prior to adaptation of metabolism to light. Investigating the downstream part of the cascade we found support for the hypothesis that ENV1 is necessary for cAMP mediated regulation of a considerable part of the core functions of the output pathway of this cascade, including regulation of glycoside hydrolase genes and those involved in nitrogen, sulphur and amino acid metabolism. CONCLUSIONS: ENV1 and PhLP1 are mutual regulators connecting light signaling with nutrient signaling, with ENV1 triggering the output pathway by influencing cAMP levels.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Light , Signal Transduction , Trichoderma/genetics , Trichoderma/metabolism , Adaptation, Biological , Cluster Analysis , Cyclic AMP/metabolism , Gene Expression Profiling , Mutation , Photoperiod , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Transcription, Genetic
6.
Appl Environ Microbiol ; 78(7): 2168-78, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22286997

ABSTRACT

The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.


Subject(s)
Adenylyl Cyclases/metabolism , Cellulase/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Fungal , Light , Trichoderma/enzymology , Adenylyl Cyclases/genetics , Cellulase/genetics , Culture Media , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Darkness , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Lactose/metabolism , Mutation , Signal Transduction , Trichoderma/genetics , Trichoderma/growth & development , Trichoderma/physiology
7.
Biotechnol Biofuels ; 5(1): 1, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22212435

ABSTRACT

BACKGROUND: The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies. RESULTS: Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and then transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414. CONCLUSIONS: Using this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.

8.
Appl Environ Microbiol ; 77(13): 4553-63, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602376

ABSTRACT

Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-ß-D-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and D-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms.


Subject(s)
Cellulase/metabolism , Oxidoreductases/metabolism , Regulon , Trichoderma/enzymology , Cellobiose/metabolism , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Order , Glucans/metabolism , Oxidoreductases/genetics , Phylogeny , Sequence Homology, Amino Acid , Transcription, Genetic , Transcriptional Activation , Trichoderma/genetics
9.
BMC Res Notes ; 3: 330, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21138554

ABSTRACT

BACKGROUND: In nature, light is one of the most important environmental cues that fungi perceive and interpret. It is known not only to influence growth and conidiation, but also cellulase gene expression. We therefore studied the relevance of the main components of the light perception machinery of Trichoderma reesei (Hypocrea jecorina), ENV1, BLR1 and BLR2, for production of plant cell wall degrading enzymes in fermentations aimed at efficient biosynthesis of enzyme mixtures for biofuel production. FINDINGS: Our results indicate that despite cultivation in mostly dark conditions, all three components show an influence on cellulase expression. While we found the performance of the enzyme mixture secreted by a deletion mutant in env1 to be enhanced, the higher cellulolytic activity observed for Δblr2 is mainly due to an increased secretion capacity of this strain. Δblr1 showed enhanced biomass accumulation, but due to its obviously lower secretion capacity still was the least efficient strain in this study. CONCLUSIONS: We conclude that with respect to regulation of plant cell wall degrading enzymes, the blue light regulator proteins are unlikely to act as a complex. Their regulatory influence on cellulase biosynthesis involves an alteration of protein secretion, which may be due to adjustment of transcription or posttranscriptional regulation of upstream factors. In contrast, the regulatory function of ENV1 seems to involve adjustment of enzyme proportions to environmental conditions.

10.
Cell Cycle ; 9(13): 2629-39, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20581467

ABSTRACT

BACKGROUND & AIMS: p73 belongs to the p53 family of transcription factors known to regulate cell cycle and apoptosis. The Trp73 gene has two promoters that drive the expression of two major p73 isoform subfamilies: TA and ΔN. In general, TAp73 isoforms show proapoptotic activities, whereas members of the N-terminally truncated (ΔN) p73 subfamily that lack the transactivation domain show antiapoptotic functions. We found that upregulation of ΔNp73 in hepatocellular carcinoma (HCC) correlated with reduced survival. Here, we investigated the molecular mechanisms accounting for the oncogenic role of ΔNp73 in HCC. RESULTS: ΔNp73ß can directly interfere with the transcriptional activation function of the TA (containing the transactivation domain) isoforms of the p53 family and consequently inhibit transactivation of proapoptotic target genes. Interference of ΔNp73ß with apoptosis-/chemosensitivity takes place at several levels of apoptosis signaling. ΔNp73ß negatively regulates the genes encoding for the death receptors CD95, TNF-R1, TRAIL-R2 and TNFRSF18. Furthermore, ΔNp73ß represses the genes encoding caspase-2, -3, -6, -8 and -9. Concomitantly, ΔNp73ß inhibits apoptosis emanating from mitochondria. CONCLUSIONS: Thus, ΔNp73 expression in HCC selects against both the death receptor and the mitochondrial apoptosis activity of the TA isoforms. Our data suggest that ΔNp73 isoforms repress apoptosis-related genes of the extrinsic and intrinsic apoptosis signaling pathways thereby contributing to chemoresistance. The clinical importance of these data is evidenced by our finding that the ΔNp73ß target gene signature can predict the prognosis of patients suffering from HCC.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular/pathology , DNA-Binding Proteins/metabolism , Liver Neoplasms/pathology , Mitochondria/metabolism , Nuclear Proteins/metabolism , Receptors, Death Domain/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Base Sequence , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Caspases/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Enzyme Activation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Dominant/genetics , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Mitochondria/enzymology , Models, Biological , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Prognosis , Protein Isoforms/metabolism , Tumor Protein p73 , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
11.
Appl Microbiol Biotechnol ; 87(3): 787-99, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20461510

ABSTRACT

Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.


Subject(s)
Industrial Microbiology , Trichoderma/genetics , Trichoderma/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Trichoderma/classification , Trichoderma/enzymology
13.
Int J Cancer ; 126(9): 2049-66, 2010 May 01.
Article in English | MEDLINE | ID: mdl-19711344

ABSTRACT

We investigated the downstream mechanisms by which chemotherapeutic drugs elicit apoptosis in hepatocellular carcinoma (HCC). Genomic signatures of HCC cell lines treated with different chemotherapeutic drugs were obtained. Analyses of apoptosis pathways were performed and RNA interference was used to evaluate the role of the p53 family. Endogenous p53, p63 and p73 were upregulated in response to DNA damage by chemotherapeutic drugs. Blocking p53 family function led to chemoresistance in HCC. Stimulation and blocking experiments of the CD95-, the TNF- and the TRAIL-receptor systems revealed that cytotoxic drugs, via the p53 family members as transactivators, can trigger expression of each of these death receptors and consequently sensitize HCC cells toward apoptosis. Furthermore, our findings demonstrate a link between chemotherapy, the p53 family and the mitochondrial apoptosis pathway in HCC. Chemotherapeutic treatment induces expression of proapoptotic Bcl-2 family members like Bax and BCL2L11 and the expression of Apaf1, BNIP1, Pdcd8 and RAD. Thus, upon DNA damage, p53, p63 and p73 promote apoptosis via the extrinsic and the intrinsic signaling pathway. In addition, not only proapoptotic genes were upregulated, but also genes known to exert antiapoptotic functions. Bleomycin-induced upregulation of BCL-XL/BCLXL1 and MDM2 suggests that it is the ratio of proapoptotic and antiapoptotic proteins that regulates the apoptosis response of HCC cells toward chemotherapy, thereby playing a decisive role between treatment sensitivity vs. drug resistance. The clinical importance of these data is evidenced by our finding that the bleomycin target gene signature can predict the prognosis of patients suffering from HCC.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Tumor Suppressor Protein p53/physiology , Bleomycin/pharmacology , Carcinoma, Hepatocellular/pathology , Caspases/physiology , Fas-Associated Death Domain Protein/physiology , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/physiology , Oligonucleotide Array Sequence Analysis , Prognosis
14.
BMC Biol ; 7: 58, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19728862

ABSTRACT

BACKGROUND: The filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi. RESULTS: Analysis of the regulatory targets of the G-protein alpha subunit GNA1 in H. jecorina revealed a carbon source and light-dependent role in signal transduction. Deletion of gna1 led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Deltagna1 on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress. CONCLUSION: We conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Galpha subunit in appropriation of intracellular resources to environmental (especially nutritional) conditions.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/genetics , Fungal Proteins/physiology , GTP-Binding Protein alpha Subunits/physiology , Gene Expression Regulation, Fungal , Hypocrea/metabolism , Light , Carbon/metabolism , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cloning, Molecular , Darkness , Feedback, Physiological , Fungal Proteins/genetics , GTP-Binding Protein alpha Subunits/genetics , Gene Deletion , Glucose/metabolism , Glycerol/metabolism , Hypocrea/chemistry , Hypocrea/genetics , Hypocrea/growth & development , Mutagenesis , Osmotic Pressure , Oxidative Stress , Recombinant Proteins/metabolism , Signal Transduction , Vitamin K 3/toxicity
15.
Commun Integr Biol ; 2(4): 308-10, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19721873

ABSTRACT

Almost all creatures have invented sophisticated mechanisms to adjust their developmental and metabolic processes to the changing light intensities in day and night. Recent findings suggest that one such mechanism is signaling via heterotrimeric G-proteins.1 The Trichoderma reesei (anamorph of Hypocrea jecorina) G-alpha subunit gene gna3 was found to be responsive to light and influenced by the light regulatory protein ENVOY.2 GNA3 significantly impacts regulation of cellulase gene expression only in light.1 While the exact mechanism of this regulation remains to be determined, first hints point to a regulation at the transcriptional level, since we observed light induced complex formation within the gna3 promotor. At least some of the components of this putatively regulatory protein complex also bind to the env1-promotor. These data indicate that the signal related by GNA3 is of light-dependent significance for H. jecorina and that the pathway of heterotrimeric G-protein signaling may be a target of the light perception machinery in fungi.

16.
Biotechnol Biofuels ; 2: 19, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19723296

ABSTRACT

Hypocrea jecorina (= Trichoderma reesei) is the main industrial source of cellulases and hemicellulases used to depolymerise plant biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. Cellulases are formed adaptively, and several positive (XYR1, ACE2, HAP2/3/5) and negative (ACE1, CRE1) components involved in this regulation are now known. In addition, its complete genome sequence has been recently published, thus making the organism susceptible to targeted improvement by metabolic engineering. In this review, we summarise current knowledge about how cellulase biosynthesis is regulated, and outline recent approaches and suitable strategies for facilitating the targeted improvement of cellulase production by genetic engineering.

17.
Eukaryot Cell ; 8(3): 410-20, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19136572

ABSTRACT

Although the enzymes enabling Hypocrea jecorina (anamorph Trichoderma reesei) to degrade the insoluble substrate cellulose have been investigated in some detail, little is still known about the mechanism by which cellulose signals its presence to the fungus. In order to investigate the possible role of a G-protein/cyclic AMP signaling pathway, the gene encoding GNA3, which belongs to the adenylate cyclase-activating class III of G-alpha subunits, was cloned. gna3 is clustered in tandem with the mitogen-activated protein kinase gene tmk3 and the glycogen phosphorylase gene gph1. The gna3 transcript is upregulated in the presence of light and is almost absent in the dark. A strain bearing a constitutively activated version of GNA3 (gna3QL) exhibits strongly increased cellulase transcription in the presence of the inducer cellulose and in the presence of light, whereas a gna3 antisense strain showed delayed cellulase transcription under this condition. However, the gna3QL mutant strain was unable to form cellulases in the absence of cellulose. The necessity of light for stimulation of cellulase transcription by GNA3 could not be overcome in a mutant which expressed gna3 under control of the constitutive gpd1 promoter also in darkness. We conclude that the previously reported stimulation of cellulase gene transcription by light, but not the direct transmission of the cellulose signal, involves the function and activation of GNA3. The upregulation of gna3 by light is influenced by the light modulator ENVOY, but GNA3 itself has no effect on transcription of the light regulator genes blr1, blr2, and env1. Our data for the first time imply an involvement of a G-alpha subunit in a light-dependent signaling event in fungi.


Subject(s)
Cellulase/genetics , Fungal Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Gene Expression Regulation, Enzymologic/radiation effects , Hypocrea/enzymology , Hypocrea/radiation effects , Cellulase/metabolism , Cellulose/metabolism , Fungal Proteins/genetics , GTP-Binding Protein alpha Subunits/genetics , Gene Expression Regulation, Fungal/radiation effects , Hypocrea/genetics , Light , Molecular Sequence Data
18.
J Biotechnol ; 139(2): 146-51, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19027803

ABSTRACT

The industrially applied ascomycete Hypocrea jecorina (synonym: Trichoderma reesei) exhibits a low rate of exogenous DNA integration by homologous recombination (HR). This hinders the high-throughput generation of strains by gene replacement and is therefore impeding systematic functional gene analyses towards, e.g. strain improvement for protein or enzyme production. To increase the rate of HR events during fungal transformation we identified and deleted the orthologue of the human KU70 in H. jecorina, which is required for the nonhomologous end joining (NHEJ) pathway and responsible for ectopic DNA integration. The effect of the absence of the H. jecorina tku70 on gene targeting was tested by deletion of two so far uncharacterized genes encoding a short chain dehydrogenase and a fungal specific transcription factor. Efficiency of gene targeting for both genes was >95% in a Deltatku70 strain when 1kb homologous flanking regions were used in the deletion construct. This is a significant increase in targeting efficiency compared to the parental - non-tku70 deleted - strain TU-6 where a gene knock-out frequency of only 5-10% was observed. Together with the recently annotated genomic sequence of H. jecorina, this system provides a useful tool for a genome-wide functional gene analysis on a high-throughput scale to improve the biotechnological potential of this fungus.


Subject(s)
DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Gene Targeting/methods , Genes, Fungal , Hypocrea/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Gene Knockout Techniques , Hypocrea/drug effects , Hypocrea/metabolism , Hypocrea/radiation effects , Methyl Methanesulfonate/pharmacology , Phenotype , Phleomycins/pharmacology , Recombination, Genetic , Transformation, Genetic , Ultraviolet Rays
19.
BMC Genomics ; 8: 449, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-18053205

ABSTRACT

BACKGROUND: In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. RESULTS: The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. CONCLUSION: The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.


Subject(s)
Cellulases/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/radiation effects , Hypocrea/enzymology , Hypocrea/radiation effects , Light , Signal Transduction/radiation effects , Transcription, Genetic , Cellulases/radiation effects , DNA, Fungal/chemistry , DNA, Fungal/radiation effects , Darkness , Expressed Sequence Tags/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Genes, Fungal/radiation effects , Genes, Regulator/radiation effects , Hypocrea/genetics , Nucleic Acid Hybridization/methods , Protein Biosynthesis/radiation effects , RNA, Messenger/chemistry , RNA, Messenger/radiation effects , Species Specificity , Subtraction Technique , Transcription, Genetic/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...