Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 13(1): 14023, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640921

ABSTRACT

12-lead electrocardiogram (ECG) recordings can be collected in any clinic and the interpretation is performed by a clinician. Modern machine learning tools may make them automatable. However, a large fraction of 12-lead ECG data is still available in printed paper or image only and comes in various formats. To digitize the data, smartphone cameras can be used. Nevertheless, this approach may introduce various artifacts and occlusions into the obtained images. Here we overcome the challenges of automating 12-lead ECG analysis using mobile-captured images and a deep neural network that is trained using a domain adversarial approach. The net achieved an average 0.91 receiver operating characteristic curve on tested images captured by a mobile device. Assessment on image from unseen 12-lead ECG formats that the network was not trained on achieved high accuracy. We further show that the network accuracy can be improved by including a small number of unlabeled samples from unknown formats in the training data. Finally, our models also achieve high accuracy using signals as input rather than images. Using a domain adaptation approach, we successfully classified cardiac conditions on images acquired by a mobile device and showed the generalizability of the classification using various unseen image formats.


Subject(s)
Acclimatization , Health Status , Ambulatory Care Facilities , Artifacts , Electrocardiography
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34099565

ABSTRACT

Despite their great promise, artificial intelligence (AI) systems have yet to become ubiquitous in the daily practice of medicine largely due to several crucial unmet needs of healthcare practitioners. These include lack of explanations in clinically meaningful terms, handling the presence of unknown medical conditions, and transparency regarding the system's limitations, both in terms of statistical performance as well as recognizing situations for which the system's predictions are irrelevant. We articulate these unmet clinical needs as machine-learning (ML) problems and systematically address them with cutting-edge ML techniques. We focus on electrocardiogram (ECG) analysis as an example domain in which AI has great potential and tackle two challenging tasks: the detection of a heterogeneous mix of known and unknown arrhythmias from ECG and the identification of underlying cardio-pathology from segments annotated as normal sinus rhythm recorded in patients with an intermittent arrhythmia. We validate our methods by simulating a screening for arrhythmias in a large-scale population while adhering to statistical significance requirements. Specifically, our system 1) visualizes the relative importance of each part of an ECG segment for the final model decision; 2) upholds specified statistical constraints on its out-of-sample performance and provides uncertainty estimation for its predictions; 3) handles inputs containing unknown rhythm types; and 4) handles data from unseen patients while also flagging cases in which the model's outputs are not usable for a specific patient. This work represents a significant step toward overcoming the limitations currently impeding the integration of AI into clinical practice in cardiology and medicine in general.


Subject(s)
Artificial Intelligence , Cardiology , Deep Learning , Electrocardiography , Physicians , Algorithms , Humans , Models, Cardiovascular , ROC Curve , Reproducibility of Results , Statistics as Topic , Time Factors , Uncertainty
3.
Front Physiol ; 12: 637680, 2021.
Article in English | MEDLINE | ID: mdl-33679450

ABSTRACT

BACKGROUND: Screening the general public for atrial fibrillation (AF) may enable early detection and timely intervention, which could potentially decrease the incidence of stroke. Existing screening methods require professional monitoring and involve high costs. AF is characterized by an irregular irregularity of the cardiac rhythm, which may be detectable using an index quantifying and visualizing this type of irregularity, motivating wide screening programs and promoting the research of AF patient subgroups and clinical impact of AF burden. METHODS: We calculated variability, normality and mean of the difference between consecutive RR interval series (denoted as modified entropy scale-MESC) to quantify irregular irregularities. Based on the variability and normality indices calculated for long 1-lead ECG records, we created a plot termed a regularogram (RGG), which provides a visual presentation of irregularly irregular rates and their burden in a given record. To inspect the potency of these indices, they were applied to train and test a machine learning classifier to identify AF episodes in gold-standard, publicly available databases (PhysioNet) that include recordings from both patients with AF and/or other rhythm disturbances, and from healthy volunteers. The classifier was trained and validated on one database and tested on three other databases. RESULTS: Irregular irregularities were identified using normality, variability and mean MESC indices. The RGG displayed visually distinct differences between patients with vs. without AF and between patients with different levels of AF burden. Training a simple, explainable machine learning tool integrating these three indices enabled AF detection with 99.9% accuracy, when trained on the same person, and 97.8%, when trained on patients from a different database. Comparison to other RR interval-based AF detection methods that utilize signal processing, classic machine learning and deep learning techniques, showed superiority of our suggested method. CONCLUSION: Visualizing and quantifying irregular irregularities will be of value for both rapid visual inspection of long Holter recordings for the presence and the burden of AF, and for machine learning classification to identify AF episodes. A free online tool for calculating the indices, drawing RGGs and estimating AF burden, is available.

4.
Sci Rep ; 10(1): 16331, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004907

ABSTRACT

Standard 12-lead electrocardiography (ECG) is used as the primary clinical tool to diagnose changes in heart function. The value of automated 12-lead ECG diagnostic approaches lies in their ability to screen the general population and to provide a second opinion for doctors. Yet, the clinical utility of automated ECG interpretations remains limited. We introduce a two-way approach to an automated cardiac disease identification system using standard digital or image 12-lead ECG recordings. Two different network architectures, one trained using digital signals (CNN-dig) and one trained using images (CNN-ima), were generated. An open-source dataset of 41,830 classified standard ECG recordings from patients and volunteers was generated. CNN-ima was trained to identify atrial fibrillation (AF) using 12-lead ECG digital signals and images that were also transformed to mimic mobile device camera-acquired ECG plot snapshots. CNN-dig accurately (92.9-100%) identified every possible combination of the eight most-common cardiac conditions. Both CNN-dig and CNN-ima accurately (98%) detected AF from standard 12-lead ECG digital signals and images, respectively. Similar classification accuracy was achieved with images containing smartphone camera acquisition artifacts. Automated detection of cardiac conditions in standard digital or image 12-lead ECG signals is feasible and may improve current diagnostic methods.


Subject(s)
Diagnosis, Computer-Assisted , Electrocardiography/methods , Heart Diseases/diagnosis , Image Interpretation, Computer-Assisted , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Automation/methods , Diagnosis, Computer-Assisted/methods , Female , Heart/physiology , Heart/physiopathology , Heart Diseases/physiopathology , Humans , Image Interpretation, Computer-Assisted/methods , Male , Neural Networks, Computer , Reproducibility of Results , Sensitivity and Specificity , Supervised Machine Learning
5.
Article in English | MEDLINE | ID: mdl-23366301

ABSTRACT

Human gait is an important indicator of health, with applications ranging from diagnosis, monitoring, and rehabilitation. In practice, the use of gait analysis has been limited. Existing gait analysis systems are either expensive, intrusive, or require well-controlled environments such as a clinic or a laboratory. We present an accurate gait analysis system that is economical and non-intrusive. Our system is based on the Kinect sensor and thus can extract comprehensive gait information from all parts of the body. Beyond standard stride information, we also measure arm kinematics, demonstrating the wide range of parameters that can be extracted. We further improve over existing work by using information from the entire body to more accurately measure stride intervals. Our system requires no markers or battery-powered sensors, and instead relies on a single, inexpensive commodity 3D sensor with a large preexisting install base. We suggest that the proposed technique can be used for continuous gait tracking at home.


Subject(s)
Gait/physiology , Monitoring, Ambulatory/instrumentation , Adult , Arm/physiology , Female , Humans , Male , Middle Aged , Time Factors
6.
IEEE Trans Syst Man Cybern B Cybern ; 34(6): 2426-38, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15619943

ABSTRACT

We extend the problem of association rule mining--a key data mining problem--to systems in which the database is partitioned among a very large number of computers that are dispersed over a wide area. Such computing systems include grid computing platforms, federated database systems, and peer-to-peer computing environments. The scale of these systems poses several difficulties, such as the impracticality of global communications and global synchronization, dynamic topology changes of the network, on-the-fly data updates, the need to share resources with other applications, and the frequent failure and recovery of resources. We present an algorithm by which every node in the system can reach the exact solution, as if it were given the combined database. The algorithm is entirely asynchronous, imposes very little communication overhead, transparently tolerates network topology changes and node failures, and quickly adjusts to changes in the data as they occur. Simulation of up to 10,000 nodes show that the algorithm is local: all rules, except for those whose confidence is about equal to the confidence threshold, are discovered using information gathered from a very small vicinity, whose size is independent of the size of the system.


Subject(s)
Algorithms , Artificial Intelligence , Computer Communication Networks , Database Management Systems , Databases, Factual , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Information Dissemination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...