Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 34(37): 11110-11120, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30132676

ABSTRACT

A set of functionalized nanoparticles (PEGylated dendrimers, d = 2.8-11 nm) was used to probe the structural heterogeneity in Na+/K+ induced κ-carrageenan gels. The self-diffusion behavior of these nanoparticles as observed by 1H pulsed-field gradient NMR, fluorescence recovery after photobleaching, and raster image correlation spectroscopy revealed a fast and a slow component, pointing toward microstructural heterogeneity in the gel network. The self-diffusion behavior of the faster nanoparticles could be modeled with obstruction by a coarse network (average mesh size <100 nm), while the slower-diffusing nanoparticles are trapped in a dense network (lower mesh size limit of 4.6 nm). Overhauser dynamic nuclear polarization-enhanced NMR relaxometry revealed a reduced local solvent water diffusivity near 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-labeled nanoparticles trapped in the dense network, showing that heterogeneity in the physical network is also reflected in heterogeneous self-diffusivity of water. The observed heterogeneity in mesh sizes and in water self-diffusivity is of interest for understanding and modeling of transport through and release of solutes from heterogeneous biopolymer gels.

2.
Soft Matter ; 12(29): 6293-9, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27367292

ABSTRACT

We explore computational high-throughput screening as a design strategy for heterogeneous, isotropic fiber materials. Fluid permeability, a key property in the design of soft porous materials, is systematically studied using a multi-scale lattice Boltzmann framework. After characterizing microscopic permeability as a function of solid volume fraction in the microstructure, we perform high-throughput computational screening of in excess of 35 000 macrostructures consisting of a continuous bulk interrupted by spherical/elliptical domains with either lower or higher microscopic permeability (hence with two distinct microscopic solid volume fractions and therefore two distinct microscopic permeabilities) to assess which parameters determine macroscopic permeability for a fixed average solid volume fraction. We conclude that the fractions of bulk and domains and the distribution of solid volume fraction between them are the primary determinants of macroscopic permeability, and that a substantial increase in permeability compared to the corresponding homogenous material is attainable.

3.
Carbohydr Polym ; 144: 289-96, 2016 Jun 25.
Article in English | MEDLINE | ID: mdl-27083820

ABSTRACT

The influence of the mixture of water and alcohols on the solubility and properties of alginate and its calcium-induced gels is of interest for the food, wound care and pharmaceutical industries. The solvent quality of water with increasing amounts of ethanol (0-20%) on alginate was studied using intrinsic viscosity. The effect of ethanol addition on the rheological and mechanical properties of calcium alginate gels was determined. Small-angle X-ray scattering and transmission electron microscopy were used to study the network structure. It is shown that the addition of ethanol up to 15% (wt) increases the extension of the alginate chain, which correlates with increased moduli and stress being required to fracture the gels. The extension of the polymer chain is reduced at 20% (wt) ethanol, which is followed by reduced moduli and stress at breakage of the gels. The network structure of gels at high ethanol concentrations (24%) is characterized by thick and poorly connected network strands.

4.
Soft Matter ; 12(17): 3897-907, 2016 05 07.
Article in English | MEDLINE | ID: mdl-27021649

ABSTRACT

Alginate gels with naturally occurring macroscopic capillaries have been used as a model system to study the interplay between laminar flow and diffusion of nanometer-sized solutes in real time. Calcium alginate gels that contain homogeneously distributed parallel-aligned capillary structures were formed by external addition of crosslinking ions to an alginate sol. The effects of different flow rates (0, 1, 10, 50 and 100 µl min(-1)) and three different probes (fluorescein, 10 kDa and 500 kDa fluorescein isothiocyanate-dextran) on the diffusion rates of the solutes across the capillary wall and in the bulk gel in between the capillaries were investigated using confocal laser scanning microscopy. The flow in the capillaries was produced using a syringe pump that was connected to the capillaries via a tube. Transmission electron microscopy revealed an open aggregated structure close to the capillary wall, followed by an aligned network layer and the isotropic network of the bulk gel. The most pronounced effect was observed for the 1 nm-diameter fluorescein probe, for which an increase in flow rate increased the mobility of the probe in the gel. Fluorescence recovery after photobleaching confirmed increased mobility close to the channel, with increasing flow rate. Mobility maps derived using raster image correlation spectroscopy showed that the layer with the lowest mobility corresponded to the anisotropic layer of ordered network chains. The combination of microscopy techniques used in the present study elucidates the flow and diffusion behaviors visually, qualitatively and quantitatively, and represents a promising tool for future studies of mass transport in non-equilibrium systems.

5.
Soft Matter ; 11(20): 4002-10, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25898947

ABSTRACT

Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.


Subject(s)
Cellulose/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Wall/metabolism , Diffusion , Fluorescent Dyes/chemistry , Hydrogels/metabolism , Oxidoreductases, O-Demethylating/chemistry , Oxidoreductases, O-Demethylating/metabolism , Permeability
6.
Carbohydr Polym ; 113: 336-43, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25256492

ABSTRACT

Pectins are traditionally divided into two groups, high methoxy and low methoxy. The groupings determine the charge of the pectin and the gelation mechanism. However, not as yet extensively studied is the impact on gelation of the distribution of the charges as characterized by an absolute degree of blockiness (DBabs). The aim of this study was to characterize rheologically the acid gelation of a pectin with a high DBabs and a degree of methyl esterification of ∼ 37%, in the absence and presence of monovalent ions. The results obtained suggest that a pectin with a blocky charge distribution at pH conditions close to or below the pKa exhibits weak gel-like properties at intermediate frequencies, despite the absence of a permanent network structure. The addition of monovalent ions changed the rheological behavior to resemble that of a strong gel whose properties depended on the type and concentration of the ions.


Subject(s)
Pectins/chemistry , Rheology/methods , Sodium Chloride/chemistry , Ions
7.
Soft Matter ; 10(41): 8276-87, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25189146

ABSTRACT

Probe diffusion was determined in phase separated bicontinuous gels prepared by acid-induced gelation of the whey protein isolate-gellan gum system. The topological characterization of the phase-separated gel systems is achieved by confocal microscopy and the diffusion measurements are performed using pulsed field gradient (PFG) NMR and fluorescence recovery after photo-bleaching (FRAP). These two techniques gave complementary information about the mass transport at different time- and length scales, PFG NMR provided global diffusion rates in the gel systems, while FRAP enabled the measurements of diffusion in different phases of the phase-separated gels. The results revealed that the phase-separated gel with the largest characteristic wavelength had the fastest diffusion coefficient, while the gel with smaller microstructures had a slower probe diffusion rate. By using the diffusion data obtained by FRAP and the structural data from confocal microscopy, modelling through the lattice-Boltzmann framework was carried out to simulate the global diffusion and verify the validity of the experimental measurements. With this approach it was found that discrepancies between the two experimental techniques can be rationalized in terms of probe distribution between the different phases of the system. The combination of different techniques allowed the determination of diffusion in a phase-separated biopolymer gel and gave a clearer picture of this complex system. We also illustrate the difficulties that can arise if precautions are not taken to understand the system-probe interactions.


Subject(s)
Gels/chemistry , Polysaccharides, Bacterial/chemistry , Diffusion , Fluorescence Recovery After Photobleaching , Magnetic Resonance Spectroscopy
8.
Soft Matter ; 10(2): 357-66, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24652276

ABSTRACT

Macroscopically homogeneous and inhomogeneous calcium alginate gels are formed via internal or external addition of various amounts of calcium to an alginate solution. The externally formed gels contain parallel aligned capillary structures. The mechanical and mass transport properties and the microstructure of the differently set gels were characterized by rheological measurements, fluorescence recovery after photobleaching (FRAP) and transmission electron microscopy (TEM). TEM images show a zone of distorted anisotropic gel structure in the vicinity of the capillaries as well as indications of a lower degree of void connectivity. The diffusion rates of dextran at large distances from the capillaries were fast and capillary gels showed a plastic behaviour in comparison to the internally set gels. The results presented show large functional differences between the internally and externally set gels, which cannot be explained by the presence of capillaries alone.

9.
Biophys J ; 106(1): 253-62, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24411257

ABSTRACT

The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of ß-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the ß-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and ß-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged ß-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the ß-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model.


Subject(s)
Hydrogels/chemistry , Lactoglobulins/chemistry , Animals , Cattle , Diffusion , Fluorescence Recovery After Photobleaching , Lactoglobulins/metabolism , Protein Binding , Static Electricity
10.
Biomacromolecules ; 12(7): 2583-90, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21657234

ABSTRACT

The results of microrheological studies carried out on ionotropic pectin gels, particularly the manifest power law behavior observed at high frequencies, indicate that by using different assembly conditions gels can be formed in which the elementary network strands have different stiffnesses. It has been hypothesized that these differences reflect different network architectures, the extreme cases of which might be described as (i) dimeric calcium-chelating junction-zones of limited extent, linked by considerably longer, flexible, single-chain sections, or (ii) semiflexible bundles consisting of extensively aggregated dimeric junction zones that latterly become entangled and cross-linked. To test this hypothesis directly, microrheologically distinct pectin gels have been generated using different assembly modalities, in particular by using different concentrations of polymer and cross-linking ions and by contrasting the controlled-release of ions or ion-binding groups, and the resulting systems have been studied by small-angle X-ray scattering. The results straightforwardly reveal that gels that are clearly more semiflexible from a microrheological point-of-view contain larger scattering entities than those with a more flexible character. Furthermore, a more detailed interpretation of the scattering data with the aid of molecular modeling suggests that for the gels formed here those with a semiflexible microrheological signature consist predominantly of network filaments consisting of four or more chains, whereas those with a more flexible signature are predominantly single-chain sections linked by dimeric associations with no more that a few percent of the chains bundled to any higher extent. The ability to generate differing network architectures from the same polymer that fulfill different functional requirements, either in vivo in the plant cell wall, where pectin plays a crucial structural and mechanical role, or in vitro in a myriad of applications, makes these biomimetic biopolymer networks of considerable interest.


Subject(s)
Pectins/chemistry , Gels/chemistry , Malus/chemistry , Models, Molecular , Pectins/isolation & purification , Rheology , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...