Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 7(12): e2570, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28032857

ABSTRACT

Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell-cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa.


Subject(s)
Cell Communication/genetics , Gene Regulatory Networks , Heme Oxygenase-1/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Pseudopodia/metabolism , Animals , Cell Communication/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Crystallography, X-Ray , Culture Media, Conditioned/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Male , Mice , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Protein Binding/drug effects , Proteomics , Pseudopodia/drug effects , Sequence Analysis, RNA , Tandem Mass Spectrometry , Transcriptome/drug effects , Transcriptome/genetics
2.
Biomed Pharmacother ; 68(7): 847-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25217395

ABSTRACT

New d-ribofuranoside derivatives containing two five membered heterocycles, isoxazole and triazole or two triazole rings, were synthesized. The final products as well as the synthetic precursors were physically and spectroscopically characterized. These new diheterocyclic derivatives together with other d-riboside compounds were assessed for their impact on PC3 cell line viability. We found that exposure of prostate cancer cells to some of these compounds caused a significant inhibition of cell growth and a G0/G1 cell cycle arrest, which was concomitant with alterations in the expression of proteins involved in cell cycle progression. Furthermore, the inhibitory activity was improved in di-heterocycles when the carbohydrate moiety was protected with a cyclopentylidene group compared to the isopropylidene analogues.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Prostatic Neoplasms/drug therapy , Resting Phase, Cell Cycle/drug effects , Alkenes/pharmacology , Carbohydrates , Cell Line, Tumor , Humans , Isoxazoles/pharmacology , Male , Triazoles/pharmacology
3.
Buenos Aires; Manantial; 2002. 26 p.
Monography in Spanish | BINACIS | ID: biblio-1212584
4.
Buenos Aires; Manantial; 2002. 26 p. (106858).
Monography in Spanish | BINACIS | ID: bin-106858
SELECTION OF CITATIONS
SEARCH DETAIL
...