Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics Clin Appl ; 11(7-8)2017 07.
Article in English | MEDLINE | ID: mdl-28319654

ABSTRACT

AIM: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson's disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, the authors developed a highly sensitive MRM method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. RESULTS: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1 ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. CONCLUSIONS: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.


Subject(s)
Disease Progression , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , Adult , Aged , Female , Humans , Male , Middle Aged
2.
J Am Chem Soc ; 137(40): 12772-12775, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26425924

ABSTRACT

Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.


Subject(s)
Dendrimers/metabolism , Proteomics , Biological Transport , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...