Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13752, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551491

ABSTRACT

RNA interference (RNAi) has strong antiviral activity in a range of animal phyla, but the extent to which RNAi controls virus infection in chordates, and specifically mammals remains incompletely understood. Here we analyze the antiviral activity of RNAi against a number of positive-sense RNA viruses using Argonaute-2 deficient human cells. In line with absence of virus-derived siRNAs, Sindbis virus, yellow fever virus, and encephalomyocarditis virus replicated with similar kinetics in wildtype cells and Argonaute-2 deficient cells. Coxsackievirus B3 (CVB3) carrying mutations in the viral 3A protein, previously proposed to be a virus-encoded suppressor of RNAi in another picornavirus, human enterovirus 71, had a strong replication defect in wildtype cells. However, this defect was not rescued in Argonaute-2 deficient cells, arguing against a role of CVB3 3A as an RNAi suppressor. In agreement, neither infection with wildtype nor 3A mutant CVB3 resulted in small RNA production with the hallmarks of canonical vsiRNAs. Together, our results argue against strong antiviral activity of RNAi under these experimental conditions, but do not exclude that antiviral RNAi may be functional under other cellular, experimental, or physiological conditions in mammals.


Subject(s)
Argonaute Proteins/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Cell Line , Cell Line, Tumor , DNA Viruses/genetics , Encephalomyocarditis virus/genetics , Enterovirus A, Human/genetics , Enterovirus B, Human/genetics , HEK293 Cells , HeLa Cells , Humans , RNA Interference/physiology , RNA Viruses/genetics , Sindbis Virus/genetics , Viral Proteins/genetics , Virus Replication/genetics
2.
Viruses ; 11(5)2019 05 16.
Article in English | MEDLINE | ID: mdl-31100912

ABSTRACT

The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.


Subject(s)
Antiviral Agents/pharmacology , Immunity, Innate , Insecta/immunology , Mammals/immunology , RNA Interference/immunology , Animals , Insecta/virology , Interferon Type I , Mammals/virology , MicroRNAs/metabolism , RNA Interference/physiology , RNA Viruses/drug effects , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , RNA, Small Interfering/pharmacology , Viruses/drug effects
3.
mSphere ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28815217

ABSTRACT

Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.

4.
J Virol ; 88(22): 13447-59, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25210176

ABSTRACT

UNLABELLED: Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼ 56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE: The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of MoNV is that, unlike other nodaviruses, it expresses two subgenomic RNAs (sgRNAs). One of the sgRNAs expresses a protein that counteracts antiviral defense of its mosquito host, whereas the function of the other sgRNA remains unknown. Our results show that complete genome segments can be exchanged beyond the species level and suggest that insects harbor a large repertoire of exceptional viruses.


Subject(s)
Gene Expression Regulation, Viral , Nodaviridae/genetics , Nodaviridae/physiology , RNA, Viral/biosynthesis , Virus Replication , Animals , Capsid Proteins/analysis , Capsid Proteins/genetics , Cluster Analysis , Cote d'Ivoire , Culicidae/virology , Molecular Sequence Data , Phylogeny , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virion/chemistry
5.
Nucleic Acids Res ; 42(13): 8732-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24939903

ABSTRACT

RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.


Subject(s)
Culex/genetics , Drosophila melanogaster/genetics , Entomobirnavirus/physiology , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , Animals , Cells, Cultured , Culex/virology , Drosophila melanogaster/virology , Entomobirnavirus/genetics , Entomobirnavirus/metabolism , Viral Proteins/metabolism
6.
Am J Orthod Dentofacial Orthop ; 126(6): 725-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15592222

ABSTRACT

The objectives of this study were to investigate the structure of Invisalign appliances (Align Technology, Santa Clara, Calif) after intraoral exposure, and to qualitatively and quantitatively characterize the substances leached from the aligners after accelerated in vitro aging. Samples of Invisalign appliances were randomly selected from 10 patients before intraoral placement and after retrieval, and the prepared specimens were subjected to (1) bright-field optical reflection microscopy to study the surface morphology; (2) Fourier transform infrared microspectroscopy to characterize the in vivo changes in molecular composition induced on appliance surfaces, (3) scanning electron microscopy and energy dispersive X-ray microanalysis to identify the elemental composition of integuments formed on the surface, and (4) Vickers hardness (HV 200) testing. Another set of reference and retrieved appliances was subjected to artificial aging for 2 weeks, and the extracts were subjected to gas chromatography-mass spectroscopy. The retrieved appliances demonstrated substantial morphological variation relative to the as-received specimens involving abrasion at the cusp tips, adsorption of integuments, and localized calcification of the precipitated biofilm at stagnation sites. Buccal segments of retrieved appliances showed an increase in hardness, which might be attributed to mastication-induced cold work; however, the clinical implication of this effect on mechanotherapy is unknown. In vitro aged and retrieved appliances were found to leach no traceable amount of substances in an ethanol aging solution.


Subject(s)
Dental Materials/chemistry , Orthodontic Appliances , Adsorption , Biofilms , Dental Deposits/ultrastructure , Electron Probe Microanalysis , Ethanol/chemistry , Gas Chromatography-Mass Spectrometry , Hardness , Humans , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Polarization , Microspectrophotometry , Orthodontic Appliance Design , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...