Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 106: 109813, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32517986

ABSTRACT

Changes in human balance control can objectively be assessed using system identification techniques in combination with support surface translations. However, large, expensive and complex motion platforms are required, which are not suitable for the clinic. A treadmill could be a simple alternative to apply support surface translations. In this paper we first validated the estimation of the joint stiffness of an inverted pendulum using system identification methods in combination with support surface translations, by comparison with the joint stiffness calculated using a linear regression method. Second, we used the system identification method to investigate the effect of horizontal ground reaction forces on the estimation of the ankle torque and the dynamics of the stabilizing mechanism of 12 healthy participants. Ankle torque and resulting frequency response functions, which describes the dynamics of the stabilizing mechanism, were calculated by both including and excluding horizontal ground reaction forces. Results showed that the joint stiffness of an inverted pendulum estimated using system identification is comparable to the joint stiffness estimated by a regression method. Secondly, within the induced body sway angles, the ankle torque and frequency response function of the joint dynamics calculated by both including and excluding horizontal ground reaction forces are similar. Therefore, the horizontal ground reaction forces play a minor role in calculating the ankle torque and frequency response function of the dynamics of the stabilizing mechanism and can thus be omitted.


Subject(s)
Ankle Joint , Ankle , Biomechanical Phenomena , Humans , Torque
2.
IEEE Trans Neural Syst Rehabil Eng ; 27(12): 2336-2343, 2019 12.
Article in English | MEDLINE | ID: mdl-31545739

ABSTRACT

To unravel the underlying mechanisms of human balance control, system identification techniques are applied in combination with dedicated perturbations, like support surface translations. However, it remains unclear what the optimal amplitude and number of repetitions of the perturbation signal are. In this study we investigated the effect of the amplitude and number of repetitions on the identification of the neuromuscular controller (NMC). Healthy participants were asked to stand on a treadmill while small continuous support surface translations were applied in the form of a periodic multisine signal. The perturbation amplitude varied over seven conditions between 0.02 and 0.20 m peak-to-peak (ptp), where 6.5 repetitions of the multisine signal were applied for each amplitude, resulting in a trial length of 130 sec. For one of the conditions, 24 repetitions were recorded. The recorded external perturbation torque, body sway and ankle torque were used to calculate both the relative variability of the frequency response function (FRF) of the NMC, i.e., a measure for precision, depending on the noise-to-signal ratio (NSR) and the nonlinear distortions. Results showed that the perturbation amplitude should be minimally 0.05 m ptp, but higher perturbation amplitudes are preferred since they resulted in a higher precision, due to a lower noise-to-signal ratio (NSR). There is, however, no need to further increase the perturbation amplitude than 0.14 m ptp. Increasing the number of repetitions improves the precision, but the number of repetitions minimally required, depends on the perturbation amplitude and the preferred precision. Nonlinear contributions are low and, for the ankle torque, constant over perturbation amplitude.


Subject(s)
Postural Balance/physiology , Standing Position , Adult , Aged , Algorithms , Ankle/physiology , Biomechanical Phenomena/physiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Nonlinear Dynamics , Signal-To-Noise Ratio , Torque , Young Adult
3.
Gait Posture ; 53: 241-247, 2017 03.
Article in English | MEDLINE | ID: mdl-28231556

ABSTRACT

To maintain upright posture and prevent falling, balance control involves the complex interaction between nervous, muscular and sensory systems, such as sensory reweighting. When balance is impaired, compliant foam mats are used in training methods to improve balance control. However, the effect of the compliance of these foam mats on sensory reweighting remains unclear. In this study, eleven healthy subjects maintained standing balance with their eyes open while continuous support surface (SS) rotations disturbed the proprioception of the ankles. Multisine disturbance torques were applied in 9 trials; three levels of SS compliance, combined with three levels of desired SS rotation amplitude. Two trials were repeated with eyes closed. The corrective ankle torques, in response to the SS rotations, were assessed in frequency response functions (FRF). Lower frequency magnitudes (LFM) were calculated by averaging the FRF magnitudes in a lower frequency window, representative for sensory reweighting. Results showed that increasing the SS rotation amplitude leads to a decrease in LFM. In addition there was an interaction effect; the decrease in LFM by increasing the SS rotation amplitude was less when the SS was more compliant. Trials with eyes closed had a larger LFM compared to trials with eyes open. We can conclude that when balance control is trained using foam mats, two different effects should be kept in mind. An increase in SS compliance has a known effect causing larger SS rotations and therefore greater down weighting of proprioceptive information. However, SS compliance itself influences the sensitivity of sensory reweighting to changes in SS rotation amplitude with relatively less reweighting occurring on more compliant surfaces as SS amplitude changes.


Subject(s)
Gait , Postural Balance , Proprioception/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Reference Values , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...