Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0288812, 2023.
Article in English | MEDLINE | ID: mdl-37556450

ABSTRACT

BACKGROUND: The climate crisis is the greatest public health threat of the 21st century. Excessive heat is responsible for more deaths than any other extreme weather event, and the frequency, intensity, and duration of extreme heat events are increasing globally due to climate change. Exposure to excessive heat can result in heat related illnesses (HRIs) and long-term poor health outcomes. Physical exertion, sudden exposure to excessive heat, and the lack of physical or behavioral adaptation resources are all associated with greater HRI risk, which is expected to increase for visitors to Grand Canyon National Park (GCNP) and other public lands as climate change worsens. OBJECTIVES: Our objectives were to understand 1) the relationship between weather and HRI in GCNP visitors, 2) how future HRI rates may change, and 3) how land management agencies can update risk mitigation strategies to match changing risk and better manage an increased HRI burden. METHODS: We utilized previously published data on HRI in GCNP visitors, and records of daily visitation, temperatures, and maximum and minimum daily humidity from the same study period to develop a model estimate for HRI risk. We then used future climate projections from the World Climate Research Programme's Coupled Model Intercomparison Project phase 5 multi-model dataset to model future HRI risk under different climate scenarios. RESULTS: The incidence of HRI was significantly associated with maximum daily temperature and minimum relative humidity, and was more common in the shoulder season months. We estimated that HRI will increase 29%-137% over 2004-2009 levels through 2100, assuming no change in visitation. DISCUSSION: Climate change will continue to increase HRI risk for GCNP visitors and poses risks to public land managers' mission to provide for safe recreation experiences for the benefit of this and future generations in places like GCNP. Excessive risk during the shoulder season months presents an opportunity to increase preventative search and rescue and education efforts to mitigate increased risk.


Subject(s)
Extreme Heat , Heat Stress Disorders , Humans , Hot Temperature , Parks, Recreational , Temperature , Climate Change
2.
Ecol Appl ; 33(6): e2901, 2023 09.
Article in English | MEDLINE | ID: mdl-37334723

ABSTRACT

In fire-prone ecosystems, knowledge of vegetation-fire-climate relationships and the history of fire suppression and Indigenous cultural burning can inform discussions of how to use fire as a management tool, particularly as climate continues to change rapidly. On Wiisaakodewan-minis/Stockton Island in the Apostle Islands National Lakeshore of Wisconsin, USA, structural changes in a pine-dominated natural area containing a globally rare barrens community occurred after the cessation of cultural burning by the Indigenous Ojibwe people and the imposition of fire-suppression policies, leading to questions about the historical role of fire in this culturally and ecologically important area. To help understand better the ecological context needed to steward these pine forest and barrens communities, we developed palaeoecological records of vegetation, fire, and hydrological change using pollen, charcoal, and testate amoebae preserved in peat and sediment cores collected from bog and lagoon sediments within the pine-dominated landscape. Results indicated that fire has been an integral part of Stockton Island ecology for at least 6000 years. Logging in the early 1900s led to persistent changes in island vegetation, and post-logging fires of the 1920s and 1930s were anomalous in the context of the past millennium, likely reflecting more severe and/or extensive burning than in the past. Before that, the composition and structure of pine forest and barrens had changed little, perhaps due to regular low-severity surface fires, which may have occurred with a frequency consistent with Indigenous oral histories (~4-8 years). Higher severity fire episodes, indicated by large charcoal peaks above background levels in the records, occurred predominantly during droughts, suggesting that more frequent or more intense droughts in the future may increase fire frequency and severity. The persistence of pine forest and barrens vegetation through past periods of climatic change indicates considerable ecological resistance and resilience. Future persistence in the face of climate changes outside this historical range of variability may depend in part on returning fire to these systems.


Subject(s)
Fires , Pinus , Humans , Ecosystem , Charcoal , Forests , Wisconsin , Trees
3.
Conserv Biol ; 36(2): e13838, 2022 04.
Article in English | MEDLINE | ID: mdl-34622995

ABSTRACT

Adaptive capacity (AC)-the ability of a species to cope with or accommodate climate change-is a critical determinant of species vulnerability. Using information on species' AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species' attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species' AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species' innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species' AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.


Aplicación de Evaluaciones de la Capacidad Adaptativa para Informar la Gestión de Recursos Naturales en un Clima Cambiante Resumen La capacidad adaptativa (CA) - la habilidad que tiene una especie para sobrellevar o acomodarse al cambio climático - es una determinante crítica de la vulnerabilidad de una especie. El uso de la información sobre la CA de una especie dentro de la planeación de la conservación es de suma importancia para asegurar resultados exitosos. Identificamos las conexiones entre una lista de atributos de las especies (p. ej.: características, métricas poblacionales, comportamientos) que fueron propuestos recientemente para la evaluación de la CA de las especies y las acciones de gestión que pueden mejorar la CA para las especies que se encuentran en riesgo de extinción. Las acciones de gestión fueron identificadas con base en la evidencia de la literatura, una revisión de acciones usadas en otras guías de adaptación climática y nuestra experiencia colectiva en diferentes campos de la ecología del cambio global y la adaptación climática. Ciertas acciones de gestión respaldan las vías generales de CA de persistir en el lugar o cambiar en el espacio como respuesta al cambio climático contemporáneo. Algunas acciones, como la manipulación genética, pueden usarse para alterar directamente la habilidad que tienen las especies para sobrellevar el cambio climático, mientras que otras acciones pueden mejorar indirectamente la CA al combatir las restricciones ecológicas o antropogénicas que existen sobre la expresión de las habilidades innatas de una especie para adaptarse. Nuestra síntesis es la primera que aborda acciones potenciales de gestión conectadas directamente con la CA. Enfocarse en los atributos de la CA ayuda a mejorar el conocimiento sobre cómo y por qué los aspectos climáticos están afectando a los organismos, así como los mecanismos mediante los cuales las intervenciones de gestión afectan la CA y la vulnerabilidad al cambio climático de la especie. La adaptación climática orientada por la capacidad adaptativa es necesaria para establecer conexiones entre las causas de la vulnerabilidad, la CA y las acciones de gestión propuestas que pueden facilitar la CA y reducir la vulnerabilidad como apoyo a los paradigmas cambiantes de la conservación.


Subject(s)
Climate Change , Conservation of Natural Resources , Natural Resources
4.
Evol Appl ; 14(8): 1969-1979, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34429742

ABSTRACT

There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long-term persistence of species.

5.
PLoS One ; 13(3): e0190557, 2018.
Article in English | MEDLINE | ID: mdl-29561837

ABSTRACT

Birds in U.S. national parks find strong protection from many longstanding and pervasive threats, but remain highly exposed to effects of ongoing climate change. To understand how climate change is likely to alter bird communities in parks, we used species distribution models relating North American Breeding Bird Survey (summer) and Audubon Christmas Bird Count (winter) observations to climate data from the early 2000s and projected to 2041-2070 (hereafter, mid-century) under high and low greenhouse gas concentration trajectories, RCP8.5 and RCP2.6. We analyzed climate suitability projections over time for 513 species across 274 national parks, classifying them as improving, worsening, stable, potential colonization, and potential extirpation. U.S. national parks are projected to become increasingly important for birds in the coming decades as potential colonizations exceed extirpations in 62-100% of parks, with an average ratio of potential colonizations to extirpations of 4.1 in winter and 1.4 in summer under RCP8.5. Average species turnover is 23% in both summer and winter under RCP8.5. Species turnover (Bray-Curtis) and potential colonization and extirpation rates are positively correlated with latitude in the contiguous 48 states. Parks in the Midwest and Northeast are expected to see particularly high rates of change. All patterns are more extreme under RCP8.5 than under RCP2.6. Based on the ratio of potential colonization and extirpation, parks were classified into overall trend groups associated with specific climate-informed conservation strategies. Substantial change to bird and ecological communities is anticipated in coming decades, and current thinking suggests managing towards a forward-looking concept of ecological integrity that accepts change and novel ecological conditions, rather than focusing management goals exclusively on maintaining or restoring a static set of historical conditions.


Subject(s)
Birds , Climate Change , Conservation of Natural Resources , Models, Biological , Parks, Recreational , Analysis of Variance , Animals , Demography , Seasons , United States
6.
Curr Opin Insect Sci ; 17: 92-97, 2016 10.
Article in English | MEDLINE | ID: mdl-27720080

ABSTRACT

As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.


Subject(s)
Climate Change , Ecosystem , Insecta/physiology , Animals , Conservation of Natural Resources/trends , Decision Making , Entomology/trends
7.
Environ Manage ; 57(4): 753-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26721473

ABSTRACT

Climate change adaptation is a rapidly evolving field in conservation biology and includes a range of strategies from resisting to actively directing change on the landscape. The term 'climate change resilience,' frequently used to characterize adaptation strategies, deserves closer scrutiny because it is ambiguous, often misunderstood, and difficult to apply consistently across disciplines and spatial and temporal scales to support conservation efforts. Current definitions of resilience encompass all aspects of adaptation from resisting and absorbing change to reorganizing and transforming in response to climate change. However, many stakeholders are unfamiliar with this spectrum of definitions and assume the more common meaning of returning to a previous state after a disturbance. Climate change, however, is unrelenting and intensifying, characterized by both directional shifts in baseline conditions and increasing variability in extreme events. This ongoing change means that scientific understanding and management responses must develop concurrently, iteratively, and collaboratively, in a science-management partnership. Divergent concepts of climate change resilience impede cross-jurisdictional adaptation efforts and complicate use of adaptive management frameworks. Climate change adaptation practitioners require clear terminology to articulate management strategies and the inherent tradeoffs involved in adaptation. Language that distinguishes among strategies that seek to resist change, accommodate change, and direct change (i.e., persistence, autonomous change, and directed change) is prerequisite to clear communication about climate change adaptation goals and management intentions in conservation areas.


Subject(s)
Adaptation, Physiological , Climate Change , Conservation of Natural Resources , Communication , Terminology as Topic
8.
Ecol Appl ; 25(7): 1984-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26591463

ABSTRACT

Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.


Subject(s)
Climate Change , Forests , Geological Phenomena , Pinus/physiology , Quercus/physiology , Conservation of Natural Resources , Environmental Monitoring , Forestry , Soil , Species Specificity , Temperature , Time Factors , Wisconsin
9.
PLoS One ; 10(6): e0128226, 2015.
Article in English | MEDLINE | ID: mdl-26083361

ABSTRACT

Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979-2013) at 340 parks and projected potential future visitation (2041-2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67-77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8-23%) and expansion of the visitation season at individual parks (13-31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to both capitalize on opportunities and minimize detriment related to changing visitation.


Subject(s)
Climate Change , Conservation of Natural Resources , Humans , Parks, Recreational , Seasons , Temperature , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...