Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Xenotransplantation ; 30(6): e12829, 2023.
Article in English | MEDLINE | ID: mdl-37793086

ABSTRACT

A conference on progress in the development of xenotransplantation in China was held in Neijiang, Sichuan, in May 2023, and was attended by approximately 100 established researchers and trainees. Progress in xenotransplantation research was reviewed by both Chinese and foreign experts. The topics discussed ranged from genetic engineering of pigs and the results of pig-to-nonhuman primate organ transplantation to the requirements for designated pathogen-free (DPF) pig facilities and regulation of xenotransplantation. This conference served as an opportunity to collectively advance the development of xenotransplantation in China and pave the way for its clinical application.


Subject(s)
Organ Transplantation , Animals , Swine , Transplantation, Heterologous/methods , Genetic Engineering , China , Animals, Genetically Modified
2.
Xenotransplantation ; 30(5): e12815, 2023.
Article in English | MEDLINE | ID: mdl-37616183

ABSTRACT

Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.


Subject(s)
Parasites , Animals , Swine , Humans , Transplantation, Heterologous , Expert Testimony , Risk Assessment , Immunocompromised Host
4.
Xenotransplantation ; 28(6): e12715, 2021 11.
Article in English | MEDLINE | ID: mdl-34644438

ABSTRACT

INTRODUCTION: Pigs deficient in three glycosyltransferase enzymes (triple-knockout [TKO] pigs, that is, not expressing the three known carbohydrate xenoantigens) and expressing 'protective' human transgenes are considered a likely source of organs for transplantation into human recipients. Some human sera have no or minimal natural antibody binding to red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) from TKO pigs. However, all Old World monkeys exhibit natural antibody binding to TKO pig cells. The xenoantigen targets of Old World monkey natural antibodies are postulated to be carbohydrate moieties exposed when the expression of the carbohydrate N-glycolylneuraminic acid (Neu5Gc) is deleted. The aim of this study was to compare the survival in baboons and histopathology of renal grafts from pigs that either (a) expressed Neu5Gc (GTKO pigs; Group 1) or (b) did not express Neu5Gc (GTKO/CMAHKO [DKO] or TKO pigs; Group 2). METHODS: Life-supporting renal transplants were carried out using GTKO (n = 5) or DKO/TKO (n = 5) pig kidneys under an anti-CD40mAb-based immunosuppressive regimen. RESULTS: Group 1 baboons survived longer than Group 2 baboons (median 237 vs. 35 days; mean 196 vs. 57 days; p < 0.07) and exhibited histopathological features of antibody-mediated rejection in only two kidneys. Group 2 exhibited histopathological features of antibody-mediated rejection in all five grafts, with IgM and IgG binding to renal interstitial arteries and peritubular capillaries. Rejection-free survival was significantly longer in Group 1 (p < 0.05). CONCLUSIONS: The absence of expression of Neu5Gc on pig kidney grafts is associated with increased binding of baboon antibodies to pig endothelium and reduced graft survival.


Subject(s)
Kidney , Leukocytes, Mononuclear , Animals , Animals, Genetically Modified , Carbohydrates , Graft Rejection , Papio , Swine , Transplantation, Heterologous
7.
Xenotransplantation ; 27(3): e12608, 2020 05.
Article in English | MEDLINE | ID: mdl-32500587

ABSTRACT

During the last years, progress has been made in survival and function of pig-to-non-human primate organ xenotransplantation using organs from genetically modified pigs and immunosuppression regimens that are clinically acceptable. This, together with increased insights into a low risk of pig-to-human transmission of porcine endogenous retrovirus, has opened the perspective of starting with first-in-human trials with xenogeneic organs. The regulatory path to clinical development is complex. Unlike an organ from human donors, an organ from pigs, either genetically modified or wild-type pigs, is considered a medicinal product for human use and hence is under regulatory oversight, in the United States by the Food and Drug Administration and in Europe by the national competent authorities of the member states as well as the European Medicines Agency. Related to the status of medicinal product, "(current) good practices" apply in the process of generating a xenogeneic organ through to the transplantation into a patient and life-long follow-up. In addition, guidances for xenotransplantation products and genetically modified organisms do apply as well. This commentary focuses on regulatory aspects of transplantation of organs from genetically modified pigs into humans, with the intention to facilitate the interactions between regulatory agencies and institutions (sponsors) in research and clinical development of these organs, to support the perspective of speeding up the process with a proper entry in clinical application, to fill an unmet medical need in patients with end-stage organ disease.


Subject(s)
Government Regulation , Tissue Donors , Transplantation, Heterologous/standards , Animals , Animals, Genetically Modified , Heterografts , Humans , Immunosuppression Therapy , Primates , Swine
8.
Xenotransplantation ; 27(5): e12596, 2020 09.
Article in English | MEDLINE | ID: mdl-32585053

ABSTRACT

Genetically engineered pigs are now available for xenotransplantation in which all three known carbohydrate xenoantigens, against which humans have natural antibodies, have been deleted (triple-knockout [TKO] pigs). Furthermore, multiple human transgenes have been expressed in the TKO pigs, all of which are aimed at protecting the cells from the human immune response. Many human sera demonstrate no or minimal antibody binding to, and little or no cytotoxicity of, cells from these pigs, and this is associated with a relatively low T-cell proliferative response. Unfortunately, baboons and other Old World NHPs have antibodies against TKO pig cells, apparently directed to a fourth xenoantigen that appears to be exposed after TKO. In our experience, most, if not all, humans do not have natural antibodies against this fourth xenoantigen. This discrepancy between NHPs and humans is providing a hurdle to successful translation of pig organ transplantation into the clinic, and making it difficult to provide pre-clinical data that support initiation of a clinical trial. The potential methods by which this obstacle might be overcome are discussed. We conclude that, whatever currently available genetically engineered pig is selected for the final pre-clinical studies, this may not be the optimal pig for clinical trials.


Subject(s)
Antigens, Heterophile , Graft Rejection , Transplantation, Heterologous , Animals , Animals, Genetically Modified , Graft Rejection/prevention & control , Heterografts , Humans , Papio , Swine
16.
Xenotransplantation ; 25(4): e12428, 2018 07.
Article in English | MEDLINE | ID: mdl-30264879

ABSTRACT

BACKGROUND: We established a Source Animal (barrier) Facility (SAF) for generating designated pathogen-free (DPF) pigs to serve as donors of viable organs, tissues, or cells for xenotransplantation into clinical patients. This facility was populated with caesarian derived, colostrum deprived (CDCD) piglets, from sows of conventional-specific (or specified) pathogen-free (SPF) health status in six cohorts over a 10-month period. In all cases, CDCD piglets fulfilled DPF status including negativity for porcine circovirus (PCV), a particularly environmentally robust and difficult to inactivate virus which at the time of SAF population was epidemic in the US commercial swine production industry. Two outbreaks of PCV infection were subsequently detected during sentinel testing. The first occurred several weeks after PCV-negative animals were moved under quarantine from the nursery into an animal holding room. The apparent origin of PCV was newly installed stainless steel penning, which was not sufficiently degreased thereby protecting viral particles from disinfection. The second outbreak was apparently transmitted via employee activities in the Caesarian-section suite adjacent to the barrier facility. In both cases, PCV was contained in the animal holding room where it was diagnosed making a complete facility depopulation-repopulation unnecessary. METHOD: Infectious PCV was eliminated during both outbreaks by the following: euthanizing infected animals, disposing of all removable items from the affected animal holding room, extensive cleaning with detergents and degreasing agents, sterilization of equipment and rooms with chlorine dioxide, vaporized hydrogen peroxide, and potassium peroxymonosulfate, and for the second outbreak also glutaraldehyde/quaternary ammonium. Impact on other barrier animals throughout the process was monitored by frequent PCV diagnostic testing. RESULT: After close monitoring for 6 months indicating PCV absence from all rooms and animals, herd animals were removed from quarantine status. CONCLUSION: Ten years after PCV clearance following the second outbreak, due to strict adherence to biosecurity protocols and based on ongoing sentinel diagnostic monitoring (currently monthly), the herd remains DPF including PCV negative.


Subject(s)
Circoviridae Infections/prevention & control , Circovirus/pathogenicity , Specific Pathogen-Free Organisms , Swine Diseases/prevention & control , Transplantation, Heterologous , Animals , Heterografts/virology , Swine , Swine Diseases/virology , Transplantation, Heterologous/instrumentation , Transplantation, Heterologous/methods
18.
J Immunol Res ; 2018: 1078547, 2018.
Article in English | MEDLINE | ID: mdl-29577046

ABSTRACT

Porcine hepatocytes transplanted during acute liver failure might support metabolic functions until the diseased liver recovers its function. Here, we isolated high numbers of viable pig hepatocytes and evaluated hepatocyte functionality after encapsulation. We further investigated whether coculture and coencapsulation of hepatocytes with human multipotent mesenchymal stromal cells (MSC) are beneficial on hepatocyte function. Livers from 10 kg pigs (n = 9) were harvested, and hepatocytes were isolated from liver suspensions for microencapsulation using alginate and poly(ethylene-glycol)- (PEG-) grafted alginate hydrogels, either alone or in combination with MSC. Viability, albumin secretion, and diazepam catabolism of hepatocytes were measured for one week. 9.2 ± 3.6 × 109 hepatocytes with 95.2 ± 3.1% viability were obtained after isolation. At day 3, free hepatocytes displayed 99% viability, whereas microencapsulation in alginate and PEG-grafted alginate decreased viability to 62% and 48%, respectively. Albumin secretion and diazepam catabolism occurred in free and microencapsulated hepatocytes. Coencapsulation of hepatocytes with MSC significantly improved viability and albumin secretion at days 4 and 8 (p < 0.05). Coculture with MSC significantly increased and prolonged albumin secretion. In conclusion, we established a protocol for isolation and microencapsulation of high numbers of viable pig hepatocytes and demonstrated that the presence of MSC is beneficial for the viability and function of porcine hepatocytes.


Subject(s)
Hepatocytes/physiology , Liver Failure/therapy , Mesenchymal Stem Cells/physiology , Albumins/metabolism , Alginates , Animals , Cell Survival , Cells, Cultured , Coculture Techniques , Drug Compounding , Glucuronic Acid , Hepatocytes/transplantation , Hexuronic Acids , Humans , Hydrogels , Swine , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...