Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(50): e2205078, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36587991

ABSTRACT

Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.


Subject(s)
Bioprinting , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Adhesives , Gelatin/chemistry , Skin , Wound Healing , Printing, Three-Dimensional , Hydrogels/chemistry , Bioprinting/methods
2.
Pharmaceutics ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834196

ABSTRACT

The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood-retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases. Finally, the safety and tolerability aspects of USMB, essential for the translation of USMB to the clinic, are discussed.

3.
ACS Omega ; 6(40): 26302-26310, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34660989

ABSTRACT

Chondroitin sulfate (CS) and hyaluronic acid (HA) methacrylate (MA) hydrogels are under investigation for biomedical applications. Here, the hydrolytic (in)stability of the MA esters in these polysaccharides and hydrogels is investigated. Hydrogels made with glycidyl methacrylate-derivatized CS (CSGMA) or methacrylic anhydride (CSMA) degraded after 2-25 days in a cross-linking density-dependent manner (pH 7.4, 37 °C). HA methacrylate (HAMA) hydrogels were stable over 50 days under the same conditions. CS(G)MA hydrogel degradation rates increased with pH, due to hydroxide-driven ester hydrolysis. Desulfated chondroitin MA hydrogels also degrade, indicating that sulfate groups are not responsible for CS(G)MA's hydrolytic sensitivity (pH 7.0-8.0, 37 °C). This sensitivity is likely because CS(G)MA's N-acetyl-galactosamines do not form hydrogen bonds with adjacent glucuronic acid oxygens, whereas HAMA's N-acetyl-glucosamines do. This bond absence allows CS(G)MA higher chain flexibility and hydration and could increase ester hydrolysis sensitivity in CS(G)MA networks. This report helps in biodegradable hydrogel development based on endogenous polysaccharides for clinical applications.

4.
Biomaterials ; 268: 120602, 2021 01.
Article in English | MEDLINE | ID: mdl-33360302

ABSTRACT

Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.


Subject(s)
Chondroitin Sulfates , Hydrogels , Cartilage , Hyaluronic Acid , Tissue Engineering
5.
Nat Commun ; 11(1): 1267, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152307

ABSTRACT

Three-dimensional (3D) hydrogel printing enables production of volumetric architectures containing desired structures using programmed automation processes. Our study reports a unique method of resolution enhancement purely relying on post-printing treatment of hydrogel constructs. By immersing a 3D-printed patterned hydrogel consisting of a hydrophilic polyionic polymer network in a solution of polyions of the opposite net charge, shrinking can rapidly occur resulting in various degrees of reduced dimensions comparing to the original pattern. This phenomenon, caused by complex coacervation and water expulsion, enables us to reduce linear dimensions of printed constructs while maintaining cytocompatible conditions in a cell type-dependent manner. We anticipate our shrinking printing technology to find widespread applications in promoting the current 3D printing capacities for generating higher-resolution hydrogel-based structures without necessarily having to involve complex hardware upgrades or other printing parameter alterations.


Subject(s)
Biomechanical Phenomena , Bioprinting/methods , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Chitosan , Gelatin , Humans , MCF-7 Cells , Methacrylates , Mice , Polymers/chemistry , Printing, Three-Dimensional/instrumentation , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry
6.
Front Bioeng Biotechnol ; 8: 617364, 2020.
Article in English | MEDLINE | ID: mdl-33537294

ABSTRACT

Introduction: To date, tubular tissue engineering relies on large, non-porous tubular scaffolds (Ø > 2 mm) for mechanical self-support, or smaller (Ø 150-500 µm) tubes within bulk hydrogels for studying renal transport phenomena. To advance the engineering of kidney tubules for future implantation, constructs should be both self-supportive and yet small-sized and highly porous. Here, we hypothesize that the fabrication of small-sized porous tubular scaffolds with a highly organized fibrous microstructure by means of melt-electrowriting (MEW) allows the development of self-supported kidney proximal tubules with enhanced properties. Materials and Methods: A custom-built melt-electrowriting (MEW) device was used to fabricate tubular fibrous scaffolds with small diameter sizes (Ø = 0.5, 1, 3 mm) and well-defined, porous microarchitectures (rhombus, square, and random). Human umbilical vein endothelial cells (HUVEC) and human conditionally immortalized proximal tubular epithelial cells (ciPTEC) were seeded into the tubular scaffolds and tested for monolayer formation, integrity, and organization, as well as for extracellular matrix (ECM) production and renal transport functionality. Results: Tubular fibrous scaffolds were successfully manufactured by fine control of MEW instrument parameters. A minimum inner diameter of 1 mm and pore sizes of 0.2 mm were achieved and used for subsequent cell experiments. While HUVEC were unable to bridge the pores, ciPTEC formed tight monolayers in all scaffold microarchitectures tested. Well-defined rhombus-shaped pores outperformed and facilitated unidirectional cell orientation, increased collagen type IV deposition, and expression of the renal transporters and differentiation markers organic cation transporter 2 (OCT2) and P-glycoprotein (P-gp). Discussion and Conclusion: Here, we present smaller diameter engineered kidney tubules with microgeometry-directed cell functionality. Due to the well-organized tubular fiber scaffold microstructure, the tubes are mechanically self-supported, and the self-produced ECM constitutes the only barrier between the inner and outer compartment, facilitating rapid and active solute transport.

7.
Soft Matter ; 14(30): 6327-6341, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30024582

ABSTRACT

Glycosaminoglycans (GAGs) are of interest for biomedical applications because of their ability to retain proteins (e.g. growth factors) involved in cell-to-cell signaling processes. In this study, the potential of GAG-based microgels for protein delivery and their protein release kinetics upon encapsulation in hydrogel scaffolds were investigated. Monodisperse hyaluronic acid methacrylate (HAMA) and chondroitin sulfate methacrylate (CSMA) micro-hydrogel spheres (diameters 500-700 µm), were used to study the absorption of a cationic model protein (lysozyme), microgel (de)swelling, intra-gel lysozyme distribution and its diffusion coefficient in the microgels dispersed in buffers (pH 7.4) of varying ionic strengths. Upon incubation in 20 mM buffer, lysozyme was absorbed up to 3 and 4 mg mg-1 dry microspheres for HAMA and CSMA microgels respectively, with loading efficiencies up to 100%. Binding stoichiometries of disaccharide : lysozyme (10.2 : 1 and 7.5 : 1 for HAMA and CSMA, respectively) were similar to those for GAG-lysozyme complex coacervates based on soluble GAGs found in literature. Complex coacervates inside GAG microgels were also formed in buffers of higher ionic strengths as opposed to GAG-lysozyme systems based on soluble GAGs, likely due to increased local anionic charge density in the GAG networks. Binding of cationic lysozyme to the negatively charged microgel networks resulted in deswelling up to a factor 2 in diameter. Lysozyme release from the microgels was dependent on the ionic strength of the buffer and on the number of anionic groups per disaccharide, (1 for HAMA versus 2 for CSMA). Lysozyme diffusion coefficients of 0.027 in HAMA and <0.006 µm2 s-1 in CSMA microgels were found in 170 mM buffer (duration of release 14 and 28 days respectively). Fluorescence Recovery After Photobleaching (FRAP) measurements yielded similar trends, although lysozyme diffusion was likely altered due to the negative charges introduced to the protein through the FITC-labeling resulting in weaker protein-matrix interactions. Finally, lysozyme-loaded CSMA microgels were embedded into a thermosensitive hydrogel scaffold. These composite systems showed complete lysozyme release in ∼58 days as opposed to only 3 days for GAG-free scaffolds. In conclusion, covalently crosslinked methacrylated GAG hydrogels have potential as controlled release depots for cationic proteins in tissue engineering applications.


Subject(s)
Glycosaminoglycans/chemistry , Hydrogels/chemistry , Fluorescence Recovery After Photobleaching , Hyaluronic Acid/analogs & derivatives , Hyaluronic Acid/chemistry , Hydrogen-Ion Concentration , Lab-On-A-Chip Devices , Osmolar Concentration
8.
Curr Pharm Des ; 23(26): 3845-3857, 2017.
Article in English | MEDLINE | ID: mdl-28699526

ABSTRACT

Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.


Subject(s)
Cell- and Tissue-Based Therapy/trends , Hydrogels/administration & dosage , Kidney Failure, Chronic/therapy , Kidney/physiology , Regeneration/physiology , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cell- and Tissue-Based Therapy/methods , Humans , Hydrogels/chemistry , Kidney/drug effects , Kidney Failure, Chronic/physiopathology , Regeneration/drug effects , Renal Replacement Therapy/methods , Renal Replacement Therapy/trends
9.
ACS Appl Mater Interfaces ; 3(2): 553-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21244024

ABSTRACT

Small-sized PbSe nanocrystals (NCs) were synthesized at low temperature such as 50-80 °C with high reaction yield (up to 100%), high quality, and high synthetic reproducibility, via a noninjection-based one-pot approach. These small-sized PbSe NCs with their first excitonic absorption in wavelength shorter than 1200 nm (corresponding to size < ∼3.7 nm) were developed for photovoltaic applications requiring a large quantity of materials. These colloidal PbSe NCs, also called quantum dots, are high-quality, in terms of narrow size distribution with a typical standard deviation of ∼7-9%, excellent optical properties with high quantum yield of ∼50-90% and small full width at half-maximum of ∼130-150 nm of their band-gap photoemission peaks, and high storage stability. Our synthetic design aimed at promotion of the formation of PbSe monomers for fast and sizable nucleation with the presence of a large number of nuclei at low temperature. For formation of the PbSe monomer, our low-temperature approach suggests the existence of two pathways of Pb-Se (route a) and Pb-P (route b) complexes. Either pathway may dominate, depending on the method used and its experimental conditions. Experimentally, a reducing/nucleation agent, diphenylphosphine, was added to enhance route b. The present study addresses two challenging issues in the NC community, the monomer formation mechanism and the reproducible syntheses of small-sized NCs with high yield and high quality and large-scale capability, bringing insight to the fundamental understanding of optimization of the NC yield and quality via control of the precursor complex reactivity and thus nucleation/growth. Such advances in colloidal science should, in turn, promote the development of next-generation low-cost and high-efficiency solar cells. Schottky-type solar cells using our PbSe NCs as the active material have achieved the highest power conversion efficiency of 2.82%, in comparison with the same type of solar cells using other PbSe NCs, under Air Mass 1.5 global (AM 1.5G) irradiation of 100 mW/cm(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...