Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Magn Reson Med ; 89(3): 1092-1101, 2023 03.
Article in English | MEDLINE | ID: mdl-36420871

ABSTRACT

PURPOSE: To evaluate the feasibility of spatio-temporal encoding (SPEN) readout for pseudo-continuous ASL (pCASL) in brain, and its robustness to susceptibility artifacts as introduced by aneurysm clips. METHODS: A 2D self-refocused T2 *-compensated hybrid SPEN scheme, with super-resolution reconstruction was implemented on a 1.5T Philips system. Q (=BWchirp *Tchirp ) was varied and, the aneurysm clip-induced artifact was evaluated in phantom (label-images) as well as in vivo (perfusion-weighted signal (PWS)-maps and temporal SNR (tSNR)). In vivo results were compared to gradient-echo EPI (GE-EPI) and spin-echo EPI (SE-EPI). The dependence of tSNR on TR was evaluated separately for SPEN and SE-EPI. SPEN with Q Ëœ 75 encodes with the same off-resonance robustness as EPI. RESULTS: The clip-induced artifact with SPEN decreased with increase in Q, and was smaller compared to SE-EPI and GE-EPI in vivo. tSNR decreased with Q and the tSNR of GE-EPI and SE-EPI corresponded to SPEN with a Q-value of approximately ˜85 and ˜108, respectively. In addition, SPEN perfusion images showed a higher tSNR (p < 0.05) for TR = 4000 ms compared to TR = 2100 ms, while SE-EPI did not. tSNR remained relatively stable when the time between SPEN-excitation and start of the next labeling-module was more than ˜1000 ms. CONCLUSION: Feasibility of combining SPEN with pCASL imaging was demonstrated, enabling cerebral perfusion measurements with a higher robustness to field inhomogeneity (Q > 75) compared to SE-EPI and GE-EPI. However, the SPEN chirp-pulse saturates incoming blood, thereby reducing pCASL labeling efficiency of the next acquisition for short TRs. Future developments are needed to enable 3D scanning.


Subject(s)
Aneurysm , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Spin Labels , Cerebrovascular Circulation , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Magnetic Fields , Perfusion Imaging/methods , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods
3.
Cancers (Basel) ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35884559

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.

4.
Cancers (Basel) ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35053538

ABSTRACT

Early detection improves prognosis in pancreatic ductal adenocarcinoma (PDAC), but is challenging as lesions are often small and poorly defined on contrast-enhanced computed tomography scans (CE-CT). Deep learning can facilitate PDAC diagnosis; however, current models still fail to identify small (<2 cm) lesions. In this study, state-of-the-art deep learning models were used to develop an automatic framework for PDAC detection, focusing on small lesions. Additionally, the impact of integrating the surrounding anatomy was investigated. CE-CT scans from a cohort of 119 pathology-proven PDAC patients and a cohort of 123 patients without PDAC were used to train a nnUnet for automatic lesion detection and segmentation (nnUnet_T). Two additional nnUnets were trained to investigate the impact of anatomy integration: (1) segmenting the pancreas and tumor (nnUnet_TP), and (2) segmenting the pancreas, tumor, and multiple surrounding anatomical structures (nnUnet_MS). An external, publicly available test set was used to compare the performance of the three networks. The nnUnet_MS achieved the best performance, with an area under the receiver operating characteristic curve of 0.91 for the whole test set and 0.88 for tumors <2 cm, showing that state-of-the-art deep learning can detect small PDAC and benefits from anatomy information.

5.
Phys Imaging Radiat Oncol ; 16: 33-36, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33458341

ABSTRACT

Proton beam therapy (PBT) for uveal melanoma (UM) is performed in sitting position, while the acquisition of the Magnetic resonance (MR)-images for treatment planning is performed in supine position. We assessed the effect of this difference in position on the eye- and tumour- shape. Seven subjects and six UM-patients were scanned in supine and a seating mimicking position. The distances between the tumour/sclera in both positions were calculated. The median distance between both positions was 0.1 mm. Change in gravity direction produced no substantial changes in sclera and tumour shape, indicating that supinely acquired MR-images can be used to plan ocular-PBT.

SELECTION OF CITATIONS
SEARCH DETAIL
...