Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Genet ; 93(5): 1000-1007, 2018 05.
Article in English | MEDLINE | ID: mdl-29393965

ABSTRACT

De novo variants in the gene encoding cyclin-dependent kinase 13 (CDK13) have been associated with congenital heart defects and intellectual disability (ID). Here, we present the clinical assessment of 15 individuals and report novel de novo missense variants within the kinase domain of CDK13. Furthermore, we describe 2 nonsense variants and a recurrent frame-shift variant. We demonstrate the synthesis of 2 aberrant CDK13 transcripts in lymphoblastoid cells from an individual with a splice-site variant. Clinical characteristics of the individuals include mild to severe ID, developmental delay, behavioral problems, (neonatal) hypotonia and a variety of facial dysmorphism. Congenital heart defects were present in 2 individuals of the current cohort, but in at least 42% of all known individuals. An overview of all published cases is provided and does not demonstrate an obvious genotype-phenotype correlation, although 2 individuals harboring a stop codons at the end of the kinase domain might have a milder phenotype. Overall, there seems not to be a clinically recognizable facial appearance. The variability in the phenotypes impedes an à vue diagnosis of this syndrome and therefore genome-wide or gene-panel driven genetic testing is needed. Based on this overview, we provide suggestions for clinical work-up and management of this recently described ID syndrome.


Subject(s)
CDC2 Protein Kinase/genetics , Developmental Disabilities/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Child, Preschool , Codon, Nonsense , Developmental Disabilities/physiopathology , Exome/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heart Defects, Congenital/physiopathology , Humans , Intellectual Disability/physiopathology , Male , Middle Aged , Mutation , Phenotype , RNA Splice Sites/genetics , Young Adult
2.
Clin Genet ; 84(6): 539-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23320472

ABSTRACT

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Genetic Association Studies , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Mutation , Neoplasm Proteins/genetics , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics , Facies , Female , Humans , Male , Phenotype , Sequence Analysis, DNA
3.
Clin Genet ; 79(1): 71-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20486941

ABSTRACT

Studies to identify copy number variants (CNVs) on the X-chromosome have revealed novel genes important in the causation of X-linked mental retardation (XLMR). Still, for many CNVs it is unclear whether they are associated with disease or are benign variants. We describe six different CNVs on the X-chromosome in five male patients with mental retardation that were identified by conventional karyotyping and single nucleotide polymorphism array analysis. One deletion and five duplications ranging in size from 325 kb to 12.5 Mb were observed. Five CNVs were maternally inherited and one occurred de novo. We discuss the involvement of potential candidate genes and focus on the complexity of X-chromosomal duplications in males inherited from healthy mothers with different X-inactivation patterns. Based on size and/or the presence of XLMR genes we were able to classify CNVs as pathogenic in two patients. However, it remains difficult to decide if the CNVs in the other three patients are pathogenic or benign.


Subject(s)
Chromosome Duplication , Chromosomes, Human, X , Mental Retardation, X-Linked , X Chromosome Inactivation/genetics , Blotting, Southern , Gene Dosage , Humans , Karyotyping , Male , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/physiopathology , Oligonucleotide Array Sequence Analysis , Sequence Deletion
5.
Eur J Med Genet ; 52(2-3): 77-87, 2009.
Article in English | MEDLINE | ID: mdl-19306953

ABSTRACT

Array CGH (comparative genomic hybridization) screening of large patient cohorts with mental retardation and/or multiple congenital anomalies (MR/MCA) has led to the identification of a number of new microdeletion and microduplication syndromes. Recently, a recurrent copy number variant (CNV) at chromosome 16p11.2 was reported to occur in up to 1% of autistic patients in three large autism studies. In the screening of 4284 patients with MR/MCA with various array platforms, we detected 22 individuals (14 index patients and 8 family members) with deletions in 16p11.2, which are genomically identical to those identified in the autism studies. Though some patients shared a facial resemblance and a tendency to overweight, there was no evidence for a recognizable phenotype. Autism was not the presenting feature in our series. The assembled evidence indicates that recurrent 16p11.2 deletions are associated with variable clinical outcome, most likely arising from haploinsufficiency of one or more genes. The phenotypical spectrum ranges from MR and/or MCA, autism, learning and speech problems, to a normal phenotype.


Subject(s)
Autistic Disorder/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Intellectual Disability/genetics , Abnormalities, Multiple , Adolescent , Adult , Child , Child, Preschool , Comparative Genomic Hybridization , DNA Mutational Analysis , Family Health , Female , Genetic Testing , Humans , Infant , Learning Disabilities , Male , Speech Disorders , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...