Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(3)2023 03 07.
Article in English | MEDLINE | ID: mdl-36992405

ABSTRACT

The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications.


Subject(s)
Aptamers, Peptide , Bromovirus , Nanoparticles , Aptamers, Peptide/analysis , Aptamers, Peptide/metabolism , Capsid Proteins/metabolism , Capsid/metabolism
2.
Nat Commun ; 13(1): 2867, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606349

ABSTRACT

The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it's potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture.


Subject(s)
Aortic Aneurysm, Abdominal , Peptide Library , Animals , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Disease Progression , Magnetic Resonance Imaging , Mice , Risk Factors
3.
Antibodies (Basel) ; 9(2)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224944

ABSTRACT

Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID.

4.
High Throughput ; 8(2)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052149

ABSTRACT

Screening of one-bead-one-compound (OBOC) libraries is a proven procedure for the identification of protein-binding ligands. The demand for binders with high affinity and specificity towards various targets has surged in the biomedical and pharmaceutical field in recent years. The traditional peptide screening involves tedious steps such as affinity selection, bead picking, sequencing, and characterization. Herein, we present a high-throughput "all-on-one chip" system to avoid slow and technically complex bead picking steps. On a traditional glass slide provided with an electrically conductive tape, beads of a combinatorial peptide library are aligned and immobilized by application of a precision sieve. Subsequently, the chip is incubated with a fluorophore-labeled target protein. In a fluorescence scan followed by matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry, high-affinity binders are directly and unambiguously sequenced with high accuracy without picking of the positive beads. The use of an optimized ladder sequencing approach improved the accuracy of the de-novo sequencing step to nearly 100%. The new technique was validated by employing a FLAG-based model system, identifying new peptide binders for the monoclonal M2 anti-FLAG antibody, and was finally utilized to search for IgG-binding peptides. In the present format, more than 30,000 beads can be screened on one slide.

5.
J Mass Spectrom ; 54(5): 402-411, 2019 May.
Article in English | MEDLINE | ID: mdl-30771235

ABSTRACT

DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences-bearing mismatch positions and abasic sites of complementary DNA 15-mers-were investigated to unravel general trends in their stability in the gas phase. Single-stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Base Sequence , Models, Molecular , Nucleic Acid Conformation , Spectrometry, Mass, Electrospray Ionization , Thermodynamics
6.
Angew Chem Int Ed Engl ; 58(7): 1960-1964, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30452103

ABSTRACT

Functional sequences of precision polymers based on thiolactone/Michael chemistry are identified from a large one-bead one-compound library. Single-bead readout by MALDI-TOF MS/MS identifies sequences that host m-THPC that is a second generation photo-sensitizer drug. The corresponding Tla/Michael-PEG conjugates make m-THPC available in solution and drug payload as well as drug release kinetics can be fine-tuned by the precision segment.


Subject(s)
Lactones/chemistry , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Kinetics , Mass Spectrometry , Molecular Structure , Photosensitizing Agents/chemistry , Porphyrins/chemistry
7.
Anal Chem ; 89(7): 4007-4012, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28282494

ABSTRACT

The conventional hybridoma screening and subcloning process is generally considered to be one of the most critical steps in hapten-specific antibody production. It is time-consuming, monoclonality is not guaranteed, and the number of clones that can be screened is limited. Our approach employs a novel hapten-specific labeling technique of hybridoma cells. This allows for fluorescence-activated cell sorting (FACS) and single-cell deposition and thereby eliminates the above-mentioned problems. A two-step staining approach is used to detect antigen specificity and antibody expression: in order to detect antigen specificity, hybridoma cells are incubated with a hapten-horseradish peroxidase conjugate (hapten-HRP), which is subsequently incubated with a fluorophore-labeled polyclonal anti-peroxidase antibody (anti-HRP-Alexa Fluor 488). To characterize the expression of membrane-bound immunoglobulin G (IgG), a fluorophore-labeled anti-mouse IgG antibody (anti-IgG-Alexa Fluor 647) is used. Hundreds of labeled hybridoma cells producing monoclonal antibodies (mAbs) specific for a hapten were rapidly isolated and deposited from a fusion mixture as single-cell clones via FACS. Enzyme-linked immunosorbent assay (ELISA) measurements of the supernatants of the sorted hybridoma clones revealed that all hapten-specific hybridoma clones secrete antibodies against the target. There are significant improvements using this high-throughput technique for the generation of mAbs including increased yield of antibody-producing hybridoma clones, ensured monoclonality of sorted cells, and reduced development times.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Cell Separation , Clone Cells , Flow Cytometry , Haptens/chemistry , Hybridomas/cytology , Single-Cell Analysis , Animals , Clone Cells/cytology , Clone Cells/immunology , Hybridomas/immunology , Mice
8.
Methods Protoc ; 1(1)2017 Sep 25.
Article in English | MEDLINE | ID: mdl-31164550

ABSTRACT

The small heterobifunctional linker succinimidyl iodoacetate (SIA) was examined for the preparation of peptide-protein bioconjugates with predicable conjugation ratios. For many conjugation protocols, the protein is either treated with a reductant to cleave disulfide bonds or is reacted with thiolation chemicals, such as Traut's reagent. Both approaches are difficult to control, need individual optimization and often lead to unsatisfactory results. In another popular approach, a heterobifunctional linker with a N-hydroxysuccinimide (NHS) and a maleimide functionality is applied to the protein. After the activation of some lysine ε-amino groups with the NHS ester functionality, a cysteine-containing peptide is attached to the activated carrier protein via maleimide. Particularly, the maleimide reaction leads to some unwanted byproducts or even cleavage of the linker. Many protocols end up with conjugates with unpredictable and irreproducible conjugation ratios. In addition, the maleimide-thiol addition product should be assumed immunogenic in vivo. To avoid these and other disadvantages of the maleimide approach, we examined the known linker succinimidyl iodoacetate (SIA) in more detail and developed two protocols, which lead to peptide-protein conjugates with predefined average conjugation ratios. This holds potential to eliminate tedious and expensive optimization steps for the synthesis of a bioconjugate of optimal composition.

9.
Biomacromolecules ; 16(10): 3308-12, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26302020

ABSTRACT

Combining poly(ethylene glycol) (PEG) with sequence-defined peptides in PEG-peptide conjugates offers opportunities to realize next-generation drug formulation additives for overcoming undesired pharmacological profiles of difficult small molecule drugs. The tailored peptide segments provide sequence-specific, noncovalent drug binding, and the hydrophilic PEG block renders the complexes water soluble. On the basis of a peptide sequence known to bind the photosensitizer m-tetra(hydroxyphenyl)chlorin (m-THPC) for photodynamic cancer therapy, a set of different conjugate architectures is synthesized and studied. Variations in PEG block length and amplification of the peptidic binding domain of PEG-peptide conjugates are used to fine tune critical parameters for hosting m-THPC, such as drug payload capacities, aggregation sizes, and drug release and activation kinetics.


Subject(s)
Chemistry, Pharmaceutical , Peptides/chemistry , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...