Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(20): 26533-43, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480166

ABSTRACT

As a key feature among metals showing good plasmonic behavior, aluminum extends the spectrum of achievable plasmon resonances of optical antennas into the deep ultraviolet. Due to degradation, a native oxide layer gives rise to a metal-core/oxide-shell nanoparticle and influences the spectral resonance peak position. In this work, we examine the role of the underlying processes by applying numerical nanoantenna models that are experimentally not feasible. Finite-difference time-domain simulations are carried out for a large variety of elongated single-arm and two-arm gap nanoantennas. In a detailed analysis, which takes into account the varying surface-to-volume ratio, we show that the overall spectral shift toward longer wavelengths is mainly driven by the higher index surrounding material rather than by the decrease of the initial aluminum volume. In addition, we demonstrate experimentally that this shifting can be minimized by an all-inert fabrication and subsequent proof-of-concept encapsulation.

2.
ACS Nano ; 9(1): 260-70, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25514354

ABSTRACT

Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.


Subject(s)
Lasers, Semiconductor , Nanotechnology/instrumentation , Organic Chemicals/chemistry , Spectrum Analysis, Raman/instrumentation , Adenosine/analysis , Adenosine/chemistry , Alkenes/chemistry , Gold/chemistry , Rhodamines/analysis , Rhodamines/chemistry , Silver/chemistry , Surface Properties , Water/chemistry
3.
Nano Lett ; 13(4): 1535-40, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23458211

ABSTRACT

We experimentally determine the order of multiphoton induced luminescence of aluminum nanoantennas fabricated on a nonconductive substrate using electron-beam lithography to be 2.11 (±0.10). Furthermore, we optically characterize these nanostructures via linear dark-field microscopy and nonlinear multiphoton laser excitation. We hereby observe different spectral response functions that can be seen as a splitting of peak positions when the antenna arm length is increased to Larm > 150 nm which has not yet been reported for aluminum nanostructures.


Subject(s)
Aluminum/chemistry , Luminescence , Nanostructures/chemistry , Electrons , Lasers , Light , Microscopy , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...