Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38124484

ABSTRACT

In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Phenotype , Chromosome Mapping , Seeds
2.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995686

ABSTRACT

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ankyrins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death , Ion Channels/genetics , Ion Channels/metabolism , Plant Immunity/genetics
3.
Genome Biol ; 23(1): 263, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539836

ABSTRACT

BACKGROUND: Despite its conserved role on gene expression and transposable element (TE) silencing, genome-wide CG methylation differs substantially between wild Arabidopsis thaliana accessions. RESULTS: To test our hypothesis that global reduction of CG methylation would reduce epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. Homozygous met1 mutants in all accessions suffer from common developmental defects such as dwarfism and delayed flowering, in addition to accession-specific abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated analysis of genome-wide methylation, chromatin accessibility, and transcriptomes confirms that MET1 inactivation greatly reduces CG methylation and alters chromatin accessibility at thousands of loci. While the effects on TE activation are similarly drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The global expression profiles of accessions become considerably more divergent from each other after genome-wide removal of CG methylation, although a few genes with diverse expression profiles across wild-type accessions tend to become more similar in mutants. Most differentially expressed genes do not exhibit altered chromatin accessibility or CG methylation in cis, suggesting that absence of MET1 can have profound indirect effects on gene expression and that these effects vary substantially between accessions. CONCLUSIONS: Systematic analysis of MET1 requirement in different A. thaliana accessions reveals a dual role for CG methylation: for many genes, CG methylation appears to canalize expression levels, with methylation masking regulatory divergence. However, for a smaller subset of genes, CG methylation increases expression diversity beyond genetically encoded differences.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Methylation , DNA Transposable Elements , Chromatin/metabolism , Gene Expression Regulation, Plant , DNA (Cytosine-5-)-Methyltransferases/metabolism
4.
Quant Plant Biol ; 2: e1, 2021.
Article in English | MEDLINE | ID: mdl-37077216

ABSTRACT

Genome editing with the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated protein) system allows mutagenesis of a targeted region of the genome using a Cas endonuclease and an artificial guide RNA. Both because of variable efficiency with which such mutations arise and because the repair process produces a spectrum of mutations, one needs to ascertain the genome sequence at the targeted locus for many individuals that have been subjected to mutagenesis. We provide a complete protocol for the generation of amplicons up until the identification of the exact mutations in the targeted region. CRISPR-finder can be used to process thousands of individuals in a single sequencing run. We successfully identified an ISOCHORISMATE SYNTHASE 1 mutant line in which the production of salicylic acid was impaired compared to the wild type, as expected. These features establish CRISPR-finder as a high-throughput, cost-effective and efficient genotyping method of individuals whose genomes have been targeted using the CRISPR/Cas9 system.

5.
Curr Opin Plant Biol ; 56: 89-98, 2020 08.
Article in English | MEDLINE | ID: mdl-32535454

ABSTRACT

Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.


Subject(s)
Crops, Agricultural , Plant Diseases , Agriculture , Breeding , Crops, Agricultural/genetics , Genotype , Plant Diseases/genetics
7.
Plant J ; 98(3): 492-510, 2019 05.
Article in English | MEDLINE | ID: mdl-30659683

ABSTRACT

Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade-offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM-insensitive loci by monitoring the activity of ABA-inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM-mediated inhibition of ABA-mediated reporter expression. RDA2 is required for DFPM-mediated activation of immune signaling, including phosphorylation of mitogen-activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM-mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Signal Transduction/genetics , Signal Transduction/physiology
8.
PLoS Genet ; 14(9): e1007628, 2018 09.
Article in English | MEDLINE | ID: mdl-30235212

ABSTRACT

Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.


Subject(s)
Ankyrins/immunology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis/immunology , Autoimmunity/genetics , Gene Expression Regulation, Plant/immunology , Plant Diseases/immunology , Plant Immunity/genetics , Alleles , Ankyrins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Mutation , Plant Diseases/genetics , Plants, Genetically Modified , Signal Transduction/immunology
9.
Plant Methods ; 14: 65, 2018.
Article in English | MEDLINE | ID: mdl-30083222

ABSTRACT

BACKGROUND: Our knowledge of natural genetic variation is increasing at an extremely rapid pace, affording an opportunity to come to a much richer understanding of how effects of specific genes are dependent on the genetic background. To achieve a systematic understanding of such GxG interactions, it is desirable to develop genome editing tools that can be rapidly deployed across many different genetic varieties. RESULTS: We present an efficient CRISPR/Cas9 toolbox of super module (SM) vectors. These vectors are based on a previously described fluorescence protein marker expressed in seeds allowing identification of transgene-free mutants. We have used this vector series to delete genomic regions ranging from 1.7 to 13 kb in different natural accessions of the wild plant Arabidopsis thaliana. Based on results from 53 pairs of sgRNAs targeting individual nucleotide binding site leucine-rich repeat (NLR) genes, we provide a comprehensive overview of obtaining heritable deletions. CONCLUSIONS: The SM series of CRISPR/Cas9 vectors enables the rapid generation of transgene-free, genome edited plants for a diversity of functional studies.

10.
Plant Methods ; 14: 63, 2018.
Article in English | MEDLINE | ID: mdl-30065776

ABSTRACT

BACKGROUND: The model species Arabidopsis thaliana has extensive resources to investigate intraspecific trait variability and the genetic bases of ecologically relevant traits. However, the cost of equipment and software required for high-throughput phenotyping is often a bottleneck for large-scale studies, such as mutant screening or quantitative genetics analyses. Simple tools are needed for the measurement of fitness-related traits, like relative growth rate and fruit production, without investment in expensive infrastructures. Here, we describe methods that enable the estimation of biomass accumulation and fruit number from the analysis of rosette and inflorescence images taken with a regular camera. RESULTS: We developed two models to predict plant dry mass and fruit number from the parameters extracted with the analysis of rosette and inflorescence images. Predictive models were trained by sacrificing growing individuals for dry mass estimation, and manually measuring a fraction of individuals for fruit number at maturity. Using a cross-validation approach, we showed that quantitative parameters extracted from image analysis predicts more 90% of both plant dry mass and fruit number. When used on 451 natural accessions, the method allowed modeling growth dynamics, including relative growth rate, throughout the life cycle of various ecotypes. Estimated growth-related traits had high heritability (0.65 < H2 < 0.93), as well as estimated fruit number (H2 = 0.68). In addition, we validated the method for estimating fruit number with rev5, a mutant with increased flower abortion. CONCLUSIONS: The method we propose here is an application of automated computerization of plant images with ImageJ, and subsequent statistical modeling in R. It allows plant biologists to measure growth dynamics and fruit number in hundreds of individuals with simple computing steps that can be repeated and adjusted to a wide range of laboratory conditions. It is thus a flexible toolkit for the measurement of fitness-related traits in large populations of a model species.

11.
J Cell Sci ; 131(2)2018 01 29.
Article in English | MEDLINE | ID: mdl-29242230

ABSTRACT

Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Brassinosteroids/metabolism , Paracrine Communication , Regeneration , Signal Transduction , Stem Cell Niche , Arabidopsis Proteins/metabolism , Cellular Microenvironment , DNA Damage , Down-Regulation/genetics , Gene Expression Regulation, Plant , Membrane Proteins/metabolism , Meristem/cytology , Meristem/metabolism , Models, Biological , Plant Roots/cytology , Plant Roots/metabolism , Plants, Genetically Modified , Seedlings/cytology , Seedlings/metabolism , Transcription, Genetic
12.
Plant Physiol ; 176(1): 730-741, 2018 01.
Article in English | MEDLINE | ID: mdl-29114080

ABSTRACT

As regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. Although a plethora of factors involved in their biogenesis and action in Arabidopsis (Arabidopsis thaliana) has been described, these processes and their fine-tuning are not fully understood. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156. We identified a new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of some endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWS-but not a truncated version lacking the F-box domain-display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission ("skirt") phenotype, suggesting epistasis. Also, the hws transcriptome profile partially resembles those of well-known miRNA mutants hyl1-2, se-3, and ago1-27, pointing to a role in a common pathway. We thus propose HWS as a novel, F-box dependent factor involved in miRNA function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , F-Box Proteins/metabolism , MicroRNAs/metabolism , Arabidopsis/genetics , Epistasis, Genetic , Gene Expression Regulation, Plant , MicroRNAs/genetics , Mutation/genetics , Phenotype , Transcriptome/genetics , Transgenes
13.
Curr Biol ; 27(8): 1148-1160, 2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28416116

ABSTRACT

When independently evolved immune receptor variants meet in hybrid plants, they can activate immune signaling in the absence of non-self recognition. Such autoimmune risk alleles have recurrently evolved at the DANGEROUS MIX2 (DM2) nucleotide-binding domain and leucine-rich repeat (NLR)-encoding locus in A. thaliana. One of these activates signaling in the presence of a particular variant encoded at another NLR locus, DM1. We show that the risk variants of DM1 and DM2d NLRs signal through the same pathway that is activated when plant NLRs recognize non-self elicitors. This requires the P loops of each protein and Toll/interleukin-1 receptor (TIR)-domain-mediated heteromeric association of DM1 and DM2d. DM1 and DM2d each resides in a multimeric complex in the absence of signaling, with the DM1 complex shifting to higher molecular weight when heteromerizing DM2 variants are present. The activation of the DM1 complex appears to be sensitive to the conformation of the heteromerizing DM2 variant. Autoimmunity triggered by interaction of this NLR pair thus suggests that activity of heteromeric NLR signaling complexes depends on the sum of activation potentials of partner NLRs.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis/immunology , NLR Proteins/immunology , Plant Immunity , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Autoimmunity/genetics , Mutation , NLR Proteins/genetics , Plant Immunity/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction
14.
Genome Res ; 25(2): 246-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25367294

ABSTRACT

The spatial arrangement of interphase chromosomes in the nucleus is important for gene expression and genome function in animals and in plants. The recently developed Hi-C technology is an efficacious method to investigate genome packing. Here we present a detailed Hi-C map of the three-dimensional genome organization of the plant Arabidopsis thaliana. We find that local chromatin packing differs from the patterns seen in animals, with kilobasepair-sized segments that have much higher intrachromosome interaction rates than neighboring regions, representing a dominant local structural feature of genome conformation in A. thaliana. These regions, which appear as positive strips on two-dimensional representations of chromatin interaction, are enriched in epigenetic marks H3K27me3, H3.1, and H3.3. We also identify more than 400 insulator-like regions. Furthermore, although topologically associating domains (TADs), which are prominent in animals, are not an obvious feature of A. thaliana genome packing, we found more than 1000 regions that have properties of TAD boundaries, and a similar number of regions analogous to the interior of TADs. The insulator-like, TAD-boundary-like, and TAD-interior-like regions are each enriched for distinct epigenetic marks and are each correlated with different gene expression levels. We conclude that epigenetic modifications, gene density, and transcriptional activity combine to shape the local packing of the A. thaliana nuclear genome.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Genomics , Cluster Analysis , Computational Biology/methods , Epigenesis, Genetic , Genome, Plant , Genomics/methods , Histones/metabolism , Insulator Elements
15.
EMBO Rep ; 14(7): 615-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23661080

ABSTRACT

MicroRNAs (miRNAs) originate from stemloop-forming precursor RNAs found in longer primary transcripts that often contain introns. We show that in plants, those introns, when located 3' of the stemloop, can promote mature miRNA accumulation, through a mechanism that likely operates at the level of miRNA processing or stability. Reversely, when miRNA production is reduced such as in dicer-like 1 mutants, splicing of introns that promote miRNA processing is considerably increased, pointing to a tight physical and temporal coordination of intron splicing and miRNA processing in plants. Our findings further suggest that miRNA transcripts without introns generated through alternative polyA-site usage might contribute to the differential adjustment of miRNA levels, possibly at a tissue-specific level.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Introns , MicroRNAs/genetics , RNA, Messenger/genetics , Alternative Splicing , Arabidopsis/metabolism , Inverted Repeat Sequences , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Organ Specificity , Poly A/genetics , Poly A/metabolism , RNA, Messenger/metabolism
16.
Methods Mol Biol ; 956: 131-49, 2013.
Article in English | MEDLINE | ID: mdl-23135850

ABSTRACT

Artificial microRNAs (amiRNAs) have been shown to facilitate efficient gene silencing with high specificity to the intended target gene(s). For the plant breeder, gene silencing by artificial miRNAs will certainly accelerate gene discovery, because it allows targeting of all genes in a mapping interval, independent of the genetic background. In addition, beneficial knockout phenotypes can easily be transferred between varieties and across incompatibility barriers. This chapter describes the generation and application of amiRNAs as a gene silencing tool in rice.


Subject(s)
Gene Silencing , MicroRNAs/genetics , Oryza/genetics , Cloning, Molecular/methods , Computational Biology/methods , Mutagenesis, Site-Directed , Plants, Genetically Modified , Software , Transformation, Genetic
18.
Plant J ; 62(5): 807-16, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20230491

ABSTRACT

MADS-domain transcription factors play pivotal roles in various developmental processes. The lack of simple loss-of-function phenotypes provides impediments to understand the biological function of some of the MADS-box transcription factors. Here we have characterized the potential role of the Arabidopsis thaliana AGAMOUS-LIKE6 (AGL6) gene by fusing full-length coding sequence with transcriptional activator and repressor domains and suggest a role for AGL6 in lateral organ development and flowering. Upon photoperiodic induction of flowering, AGL6 becomes expressed in abaxial and proximal regions of cauline leaf primordia, as well as the cryptic bracts subtending flowers. In developing flowers, AGL6 is detected in the proximal regions of all floral organs and in developing ovules. Converting AGL6 into a strong activator through fusion to the VP16 domain triggers bract outgrowth, implicating AGL6 in the development of bractless flowers in Arabidopsis. In addition, ectopic reproductive structures form on both bracts and flowers in gAGL6::VP16 transgenic plants, which is dependent on B and C class homeotic genes, but independent of LEAFY. Overexpression of both AGL6 and its transcriptional repressor form, AGL6::EAR, causes precocious flowering and terminal flower formation, suggesting that AGL6 suppresses the function of a floral repressor.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Flowers/growth & development , MADS Domain Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Microscopy, Electron, Scanning , Ovule/growth & development , Ovule/ultrastructure , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , RNA, Plant/genetics
19.
Methods Mol Biol ; 592: 71-88, 2010.
Article in English | MEDLINE | ID: mdl-19802590

ABSTRACT

The characterization of gene function typically includes a detailed analysis of loss-of-function alleles. In model plants, such as Arabidopsis thaliana and rice, sequence-indexed insertion collections provide a large resource of potential null alleles that can often be easily accessed through convenient Web sites (e.g., http://signal.salk.edu ). They are, however, not available for nonmodel species, require stacking for knockout of redundant homologs, and do not easily allow for partial or regulated loss of gene function, which is particularly useful when null alleles are lethal. Transgene approaches that employ directed gene silencing can substitute for null alleles and also enable refined studies of gene function, e.g., by tissue-specific and inducible gene-silencing. This chapter describes the generation and application of artificial microRNAs (amiRNAs) as a gene silencing tool in a wide variety of different plant species.


Subject(s)
Gene Silencing/physiology , MicroRNAs/genetics , Arabidopsis/genetics , MicroRNAs/physiology , Plants/genetics
20.
EMBO J ; 28(23): 3633-4, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19953107

ABSTRACT

MicroRNAs are 19-22 nt-long RNAs that regulate eukaryotic gene expression. They are processed from stem-loop containing precursor transcripts by RNAse III enzymes of the Dicer family. In this issue of the EMBO Journal, a study by Bologna and colleagues investigates the processing of two plant MIRNA families with unusually long precursors. Their findings suggest a non-canonical mode of biogenesis in which DCL1, the plant miRNA-producing enzyme, initiates sequential cuts close to the loop at the tip of the stem rather than at its base. It therefore requires the integrity of the upper stem in the precursor, although the structural and/or sequence features that guide DCL1 to its initial binding platform are yet to be identified. Owing to the loop-to-base processing and the unusual length of the stem, several additional small RNA species are produced before the cognate miRNA is excised, a phenomenon that might shed light on the origin of MIRNA genes.


Subject(s)
Arabidopsis Proteins/genetics , MicroRNAs/genetics , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , MicroRNAs/biosynthesis , Mutation , RNA Precursors/biosynthesis , RNA Precursors/genetics , RNA Stability/genetics , RNA, Plant/biosynthesis , RNA, Plant/genetics , Ribonuclease III/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...