Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 569791, 2021.
Article in English | MEDLINE | ID: mdl-34025590

ABSTRACT

Numerous studies have examined bacterial communities in biological soil crusts (BSCs) associated with warm arid to semiarid ecosystems. Few, however, have examined bacterial communities in BSCs associated with cold steppe ecosystems, which often span a wide range of climate conditions and are sensitive to trends predicted by relevant climate models. Here, we utilized Illumina sequencing to examine BSC bacterial communities with respect to climatic gradients (elevation), land management practices (grazing vs. non-grazing), and shrub/intershrub patches in a cold sagebrush steppe ecosystem in southwestern Idaho, United States. Particular attention was paid to shifts in bacterial community structure and composition. BSC bacterial communities, including keystone N-fixing taxa, shifted dramatically with both elevation and shrub-canopy microclimates within elevational zones. BSC cover and BSC cyanobacteria abundance were much higher at lower elevation (warmer and drier) sites and in intershrub areas. Shrub-understory BSCs were significantly associated with several non-cyanobacteria diazotrophic genera, including Mesorhizobium and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. High elevation (wetter and colder) sites had distinct, highly diverse, but low-cover BSC communities that were significantly indicated by non-cyanobacterial diazotrophic taxa including families in the order Rhizobiales and the family Frankiaceae. Abiotic soil characteristics, especially pH and ammonium, varied with both elevation and shrub/intershrub level, and were strongly associated with BSC community composition. Functional inference using the PICRUSt pipeline identified shifts in putative N-fixing taxa with respect to both the elevational gradient and the presence/absence of shrub canopy cover. These results add to current understanding of biocrust microbial ecology in cold steppe, serving as a baseline for future mechanistic research.

2.
Microb Ecol ; 74(3): 691-700, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28409197

ABSTRACT

Biological soil crust (biocrust) is a composite of mosses, lichens, and bacteria that performs many important soil system functions, including increasing soil stability, protecting against wind erosion, reducing nutrient loss, and mediating carbon and nitrogen fixation cycles. These cold desert and steppe ecosystems are expected to experience directional changes in both climate and disturbance. These include increased temperatures, precipitation phase changes, and increased disturbance from anthropogenic land use. In this study, we assessed how climate and grazing disturbance may affect the abundance and diversity of bacteria in biocrusts in cold steppe ecosystems located in southwestern Idaho, USA. To our knowledge, our study is the first to document how biocrust bacterial composition and diversity change along a cold steppe climatic gradient. Analyses based on 16S small subunit ribosomal RNA gene sequences identified the phylum Actinobacteria as the major bacterial component within study site biocrusts (relative abundance = 36-51%). The abundance of the phyla Actinobacteria and Firmicutes was higher at elevations experiencing cooler, wetter climates, while the abundance of Cyanobacteria, Proteobacteria, and Chloroflexi decreased. The abundance of the phyla Cyanobacteria and Proteobacteria showed no significant evidence of decline in grazed areas. Taken together, results from this study indicate that bacterial communities from rolling biocrusts found in cold steppe ecosystems are affected by climate regime and differ substantially from other cold desert ecosystems, resulting in potential differences in nutrient cycling and ecosystem dynamics.


Subject(s)
Climate , Grassland , Soil Microbiology , Agriculture , Climate Change , Cold Temperature , Environmental Biomarkers , Idaho , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...