Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 139(12): 124701, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089789

ABSTRACT

We present an investigation of the electronic structure and excited state dynamics of optically excited 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) thin films adsorbed on Ag(111) using two-photon photoemission spectroscopy (2PPE). 2PPE allows us to study both occupied and unoccupied electronic states, and we are able to identify signals from the highest occupied and the two lowest unoccupied electronic states of the PTCDA thin film in the 2PPE spectra. The energies for occupied states are identical to values from ultraviolet photoelectron spectroscopy. Compared to results from inverse photoelectron spectroscopy (IPES), the 2PPE signals from the two lowest unoccupied electronic states, LUMO and LUMO+1, are found at 0.8 eV and 1.0 eV lower energies, respectively. We attribute this deviation to the different final states probed in 2PPE and IPES and the attractive interaction of the photoexcited electron and the remaining hole. Furthermore, we present a time-resolved investigation of the excited state dynamics of the PTCDA film in the femtosecond time regime. We observe a significantly shorter inelastic excited state lifetime compared to findings from time-resolved photoluminescence spectroscopy of PTCDA single crystals which could originate from excitation quenching by the metal substrate.

2.
Nanotechnology ; 24(17): 175302, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23548767

ABSTRACT

The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) µΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) µΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

3.
Phys Rev Lett ; 101(14): 146801, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18851554

ABSTRACT

The lifetimes of electrons at the interface between 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) and Ag(111) have been studied by means of time- and angle-resolved two-photon photoemission. We observe a dispersing unoccupied state 0.6 eV above the Fermi level with an effective electron mass of 0.39m{e} at the Gamma[over ] point. The short lifetime of 54 fs is indicative of a large penetration of the wave function into the metal. Supported by model calculations this interface state is interpreted as predominantly arising from an upshift of the occupied Shockley surface state of the clean metal due to the interaction with the PTCDA overlayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...