Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 117(1): 44, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068417

ABSTRACT

Myocardial infarction (MI) with subsequent depression is associated with increased cardiac mortality. Impaired central mineralocorticoid (MR) and glucocorticoid receptor (GR) equilibrium has been suggested as a key mechanism in the pathogenesis of human depression. Here, we investigate if deficient central MR/GR signaling is causative for a poor outcome after MI in mice. Mice with an inducible forebrain-specific MR/GR knockout (MR/GR-KO) underwent baseline and follow-up echocardiography every 2 weeks after MI or sham operation. Behavioral testing at 4 weeks confirmed significant depressive-like behavior and, strikingly, a higher mortality after MI, while cardiac function and myocardial damage remained unaffected. Telemetry revealed cardiac autonomic imbalance with marked bradycardia and ventricular tachycardia (VT) upon MI in MR/GR-KO. Mechanistically, we found a higher responsiveness to atropine, pointing to impaired parasympathetic tone of 'depressive' mice after MI. Serum corticosterone levels were increased but-in line with the higher vagal tone-plasma and cardiac catecholamines were decreased. MR/GR deficiency in the forebrain led to significant depressive-like behavior and a higher mortality after MI. This was accompanied by increased vagal tone, depleted catecholaminergic compensatory capacity and VTs. Thus, limbic MR/GR disequilibrium may contribute to the impaired outcome of depressive patients after MI and possibly explain the lack of anti-depressive treatment benefit.


Subject(s)
Depression , Myocardial Infarction , Animals , Humans , Mice , Myocardial Infarction/pathology , Myocardium/pathology , Prosencephalon/metabolism , Receptors, Glucocorticoid/metabolism
2.
Sleep ; 44(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34297128

ABSTRACT

Temporal coupling between theta and gamma oscillations is a hallmark activity pattern of several cortical networks and becomes especially prominent during REM sleep. In a parallel approach, nasal breathing has been recently shown to generate phase-entrained network oscillations which also modulate gamma. Both slow rhythms (theta and respiration-entrained oscillations) have been suggested to aid large-scale integration but they differ in frequency, display low coherence, and modulate different gamma sub-bands. Respiration and theta are therefore believed to be largely independent. In the present work, however, we report an unexpected but robust relation between theta-gamma coupling and respiration in mice. Interestingly, this relation takes place not through the phase of individual respiration cycles, but through respiration rate: the strength of theta-gamma coupling exhibits an inverted V-shaped dependence on breathing rate, leading to maximal coupling at breathing frequencies of 4-6 Hz. Noteworthy, when subdividing sleep epochs into phasic and tonic REM patterns, we find that breathing differentially relates to theta-gamma coupling in each state, providing new evidence for their physiological distinctiveness. Altogether, our results reveal that breathing correlates with brain activity not only through phase-entrainment but also through rate-dependent relations with theta-gamma coupling. Thus, the link between respiration and other patterns of cortical network activity is more complex than previously assumed.


Subject(s)
Sleep, REM , Theta Rhythm , Animals , Mice , Respiration , Respiratory Rate , Sleep/physiology , Sleep, REM/physiology , Theta Rhythm/physiology
3.
ESC Heart Fail ; 6(4): 711-722, 2019 08.
Article in English | MEDLINE | ID: mdl-31025825

ABSTRACT

AIMS: Myocardial infarction (MI) and heart failure (HF) are risk factors for the development of depression, additionally worsening the quality of life and patient outcome. How HF causes depression and how depression promotes HF remain mechanistically unclear, which is at least partly caused by the difficulty of in vivo modelling of psychosomatic co-morbidity. We aimed to study the potential sequence of events with respect to different depression aspects upon HF. METHODS AND RESULTS: Male C57BL6 mice underwent MI, followed by behavioural and echocardiographic characterization. Motility, exploration, and anxiety-like behaviour were unaffected in mice after MI. We did not observe increased depressive-like behaviour in the sucrose preference, tail suspension, or Porsolt forced swim test. Mice did not display signs of learned helplessness (LH) when compared to sham. Accordingly, cluster analysis revealed only a slightly higher quota of LH in HF (38%) vs. sham mice (32%). But strikingly, three-group cluster analysis revealed an additional intermediate subpopulation at risk for LH after HF (29%). Interestingly, this population featured elevated cardiac expression of nr4a1. CONCLUSIONS: The LH paradigm uncovered a subtle predisposition to depressive-like behaviour after MI, whereas testing for anhedonia and despair was insufficient to show a behavioural shift in mice. Therefore, we suggest an accumulating risk profile and a multiple-hits hypothesis regarding the pathogenesis of co-morbid depression after MI. Symptoms of LH may present a marker of subclinical depression after MI, the impact of which remains to be investigated. The proposed sequence of behavioural testing enables the mechanistic dissection of cardio-psychogenic signalling in the future.


Subject(s)
Depression/etiology , Heart Failure/etiology , Helplessness, Learned , Myocardial Infarction/complications , Myocardial Infarction/psychology , Animals , Male , Mice , Mice, Inbred C57BL , Risk Factors
4.
Histochem Cell Biol ; 145(6): 637-46, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26780567

ABSTRACT

Synaptic inhibition in the spinal cord is mediated mainly by strychnine-sensitive glycine (GlyRs) and by γ-aminobutyric acid type A receptors (GABAAR). During neuronal maturation, neonatal GlyRs containing α2 subunits are replaced by adult-type GlyRs harboring α1 and α3 subunits. At the same time period of postnatal development, the transmembrane chloride gradient is changed due to increased expression of the potassium-chloride cotransporter (KCC2), thereby shifting the GABA- and glycine-mediated synaptic currents from mostly excitatory depolarization to inhibitory hyperpolarization. Here, we used RNA interference to suppress KCC2 expression during in vitro maturation of spinal cord neurons. Morphological analysis revealed reduced numbers and size of dendritic GlyR clusters containing α1 subunits but not of clusters harboring neonatal α2 subunits. The morphological changes were accompanied by decreased frequencies and amplitudes of glycinergic miniature inhibitory currents, whereas GABAergic synapses appeared functionally unaltered. Our data indicate that KCC2 exerts specific functions for the maturation of glycinergic synapses in cultured spinal cord neurons.


Subject(s)
Glycine/metabolism , Neurons/cytology , Neurons/metabolism , Spinal Cord/cytology , Symporters/deficiency , Symporters/metabolism , Synapses/metabolism , Cells, Cultured , Humans
5.
Thromb Haemost ; 113(5): 1095-108, 2015 May.
Article in English | MEDLINE | ID: mdl-25608503

ABSTRACT

Co-stimulation via CD154 binding to CD40, pivotal for both innate and adaptive immunity, may also link haemostasis to vascular remodelling. Here we demonstrate that human platelet-bound or recombinant soluble CD154 (sCD154) elicit the release from and tethering of ultra-large (UL) von Willebrand factor (vWF) multimers to the surface of human cultured endothelial cells (ECs) exposed to shear stress. This CD40-mediated ULVWF multimer release from the Weibel-Palade bodies was triggered by consecutive activation of TRAF6, the tyrosine kinase c-Src and phospholipase Cγ1 followed by inositol-1,4,5 trisphosphate-mediated calcium mobilisation. Subsequent exposure to human washed platelets caused ULVWF multimer-platelet string formation on the EC surface in a shear stress-dependent manner. Platelets tethered to these ULVWF multimers exhibited P-selectin on their surface and captured labelled monocytes from the superfusate. When exposed to shear stress and sCD154, native ECs from wild-type but not CD40 or vWF-deficient mice revealed a comparable release of ULVWF multimers to which murine washed platelets rapidly adhered, turning P-selectin-positive and subsequently capturing monocytes from the perfusate. This novel CD154-provoked ULVWF multimer-platelet string formation at normal to fast flow may contribute to vascular remodelling processes requiring the perivascular or intravascular accumulation of pro-inflammatory macrophages such as arteriogenesis or atherosclerosis.


Subject(s)
CD40 Ligand/metabolism , Endothelial Cells/metabolism , von Willebrand Factor/metabolism , Animals , Arteries/metabolism , Atherosclerosis/metabolism , Blood Platelets/metabolism , Calcium/chemistry , Carotid Artery, Common/pathology , Cell Adhesion , Electrophysiology , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inflammation , Ischemia/pathology , Mice , Microscopy, Fluorescence , Monocytes/cytology , Monocytes/metabolism , P-Selectin/metabolism , Perfusion , Recombinant Proteins/metabolism , Shear Strength , Signal Transduction , Stroke , Type C Phospholipases/metabolism , Weibel-Palade Bodies/metabolism
6.
EMBO J ; 33(19): 2231-46, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25097251

ABSTRACT

Neurons employ a set of homeostatic plasticity mechanisms to counterbalance altered levels of network activity. The molecular mechanisms underlying homeostatic plasticity in response to increased network excitability are still poorly understood. Here, we describe a sequential homeostatic synaptic depression mechanism in primary hippocampal neurons involving miRNA-dependent translational regulation. This mechanism consists of an initial phase of synapse elimination followed by a reinforcing phase of synaptic downscaling. The activity-regulated microRNA miR-134 is necessary for both synapse elimination and the structural rearrangements leading to synaptic downscaling. Results from miR-134 inhibition further uncover a differential requirement for GluA1/2 subunits for the functional expression of homeostatic synaptic depression. Downregulation of the miR-134 target Pumilio-2 in response to chronic activity, which selectively occurs in the synapto-dendritic compartment, is required for miR-134-mediated homeostatic synaptic depression. We further identified polo-like kinase 2 (Plk2) as a novel target of Pumilio-2 involved in the control of GluA2 surface expression. In summary, we have described a novel pathway of homeostatic plasticity that stabilizes neuronal circuits in response to increased network activity.


Subject(s)
Gene Expression Regulation , Hippocampus/metabolism , Homeostasis/physiology , MicroRNAs/genetics , Neurons/metabolism , RNA-Binding Proteins/metabolism , Synapses/physiology , Animals , Blotting, Western , Cells, Cultured , Electrophysiology , Fluorescent Antibody Technique , Hippocampus/embryology , Immunoprecipitation , Neuronal Plasticity , Neurons/cytology , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...