Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 85: 65-75, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26658137

ABSTRACT

Honey bee colonies function as a superorganism, where facultatively sterile female workers perform various tasks that support the hive. Nurse workers undergo numerous anatomical and physiological changes in preparation for brood rearing, including the growth of hypopharyngeal glands (HGs). These glands produce the major protein fraction of a protein- and lipid-rich jelly used to sustain developing larvae. Pollen intake is positively correlated with HG growth, but growth in the first three days is similar regardless of diet, suggesting that initial growth is a pre-determined process while later HG development depends on nutrient availability during a critical window in early adulthood (>3 d). It is unclear whether the resultant size differences in nurse HG are simply due to growth arrest or active degradation of the tissue. To determine what processes cause such differences in HG size, we catalogued the differential expression of both gene transcripts and proteins in the HGs of 8 d old bees that were fed diets containing pollen or no pollen. 3438 genes and 367 proteins were differentially regulated due to nutrition. Of the genes and proteins differentially expressed, undernourished bees exhibited more gene and protein up-regulation compared to well-nourished bees, with the affected processes including salivary gland apoptosis, oogenesis, and hormone signaling. Protein secretion was virtually the only process up-regulated in well-nourished bees. Further assays demonstrated that inhibition of ultraspiracle, one component of the ecdysteroid receptor, in the fat body caused larger HGs. Undernourished bees also had higher acid phosphatase activity, a physiological marker of cell death, compared to well-nourished bees. These results support a connection between poor nutrition, hormonal signaling, and HG degradation.


Subject(s)
Bees/genetics , Insect Hormones/metabolism , Insect Proteins/genetics , Protein Biosynthesis , Transcription, Genetic , Animals , Bees/growth & development , Bees/metabolism , Female , Hypopharynx/growth & development , Hypopharynx/metabolism , Insect Proteins/metabolism , Male
2.
Appl Environ Microbiol ; 80(24): 7460-72, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25239902

ABSTRACT

The honey bee hive environment contains a rich microbial community that differs according to niche. Acetobacteraceae Alpha 2.2 (Alpha 2.2) bacteria are present in the food stores, the forager crop, and larvae but at negligible levels in the nurse and forager midgut and hindgut. We first sought to determine the source of Alpha 2.2 in young larvae by assaying the diversity of microbes in nurse crops, hypopharyngeal glands (HGs), and royal jelly (RJ). Amplicon-based pyrosequencing showed that Alpha 2.2 bacteria occupy each of these environments along with a variety of other bacteria, including Lactobacillus kunkeei. RJ and the crop contained fewer bacteria than the HGs, suggesting that these tissues are rather selective environments. Phylogenetic analyses showed that honey bee-derived Alpha 2.2 bacteria are specific to bees that "nurse" the hive's developing brood with HG secretions and are distinct from the Saccharibacter-type bacteria found in bees that provision their young differently, such as with a pollen ball coated in crop-derived contents. Acetobacteraceae can form symbiotic relationships with insects, so we next tested whether Alpha 2.2 increased larval fitness. We cultured 44 Alpha 2.2 strains from young larvae that grouped into nine distinct clades. Three isolates from these nine clades flourished in royal jelly, and one isolate increased larval survival in vitro. We conclude that Alpha 2.2 bacteria are not gut bacteria but are prolific in the crop-HG-RJ-larva niche, passed to the developing brood through nurse worker feeding behavior. We propose the name Parasaccharibacter apium for this bacterial symbiont of bees in the genus Apis.


Subject(s)
Acetobacteraceae/isolation & purification , Bees/microbiology , Larva/microbiology , Acetobacteraceae/classification , Acetobacteraceae/genetics , Animals , Bees/growth & development , Bees/physiology , DNA, Bacterial/genetics , Larva/growth & development , Larva/physiology , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis
3.
BMC Genomics ; 15: 134, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24529032

ABSTRACT

BACKGROUND: Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee's diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. RESULTS: Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional analyses also suggest that the physiological and developmental processes occurring in well-fed bees are vastly different than those occurring in pollen deprived bees. Our data support the hypothesis that poor diet causes normal age-related development to go awry. CONCLUSION: Poor nutrition has major consequences for the expression of genes underlying the physiology and age-related development of nurse worker bees. More work is certainly needed to fully understand the consequences of starvation and the complex biology of nutrition and development in this system, but the genes identified in the present study provide a starting point for understanding the consequences of poor diet and for mitigating the economic costs of colony starvation.


Subject(s)
Genetic Markers , Nutritional Status , Animals , Bees/genetics , Bees/growth & development , Pollen , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Sequence Analysis, RNA , Time Factors , Transcriptome
4.
PLoS One ; 8(12): e83125, 2013.
Article in English | MEDLINE | ID: mdl-24358254

ABSTRACT

Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera) alimentary tract, and food stored in the hive (honey and packed pollen or "beebread"). We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop), midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota, and the identification of factors that may affect bacterial detection and transmission, colony food storage and disease susceptibility.


Subject(s)
Bacteria/isolation & purification , Bees/microbiology , Bees/physiology , Gastrointestinal Tract/microbiology , Honey/microbiology , Pollination , Animals , Bacteriological Techniques , DNA, Bacterial/genetics , Ecology , Endophytes/isolation & purification , Plant Nectar , RNA, Ribosomal, 16S/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...