Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 87(1): 179-88, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18437712

ABSTRACT

Screening of augmentation materials for use in balloon kyphoplasty (BKP) may be carried out using vertebral bodies (VBs) prepared from fresh cadaveric or animal model spines, but this approach has many drawbacks. Alternatively, a validated synthetic VB augmentation model may be used. In the present work, such a model-a cube (26 mm sides) of low-density polyurethane foam with a centrally located through-thickness cylindrical hole (diameter = 4 mm) completely filled with a bolus of augmentation material-was used to compare two BKP augmentation materials with very different chemistries (a high-viscosity acrylic bone cement (PMMA) and a calcium phosphate bone substitute (CP)) in cyclic compression life tests. The test conditions were considered physiologically relevant: the model was immersed in phosphate buffered saline solution, at 37 degrees C; the frequency was 3 Hz; and the maximum load was either 1150 N or 2300 N (corresponding to a maximum stress of 1.7 or 3.4 MPa). At the high load, all four PMMA and two out of seven CP specimens ran out to 1 million cycles. CP specimens consistently ran out at the low load. The use of this model for rapid and reliable ex vivo screening of BKP augmentation materials was considered both valid (because of the clear demarcation seen in the qualitative and quantitative results obtained with the two materials tested) and appropriate (that is, clinically relevant to BKP).


Subject(s)
Bone Substitutes/chemistry , Materials Testing/methods , Spine , Vertebroplasty/methods , Bone Cements , Bone Substitutes/standards , Calcium Phosphates , Materials Testing/standards , Models, Biological , Polymethyl Methacrylate , Polyurethanes
2.
Spine J ; 8(5): 770-7, 2008.
Article in English | MEDLINE | ID: mdl-18023621

ABSTRACT

BACKGROUND CONTEXT: Kyphoplasty is used to treat vertebral compression fractures (VCFs) by inflating a balloon within the vertebral body (VB) to create a void, thereby reducing the fracture, and then depositing polymethylmethacrylate (PMMA) into that void to augment the VB. Calcium phosphate (CaP) may be preferable to PMMA because it is resorbable and nontoxic, although there are concerns about its compressive strength during the setting process. PURPOSE: To evaluate the ability of a particular self-setting CaP cement to restore the structural integrity of a VCF in a 2-functional spinal unit (2FSU) cadaver model under physiologically relevant loading. STUDY DESIGN/SETTING: Repeated-measures compressive testing on a cadaver thoracolumbar 2FSU VCF model. METHODS: Ten 2FSU thoracolumbar specimens were tested to evaluate structural integrity under compressive loading during initial anterior VCF creation (in the central VB), after fracture, and after kyphoplasty treatment. Bipedicular kyphoplasty treatment was performed in a 37 degrees C chamber to reduce the fracture and create a void, which was filled with CaP (n=5) or PMMA (n=5) and allowed to cure for at least 15 minutes. Using fluoroscopic imaging, the sagittal area of the VB (SAVB), the minimum central VB height (MCVBH), and the wedge angle were measured on the central VB for each condition at a 1,000-N compressive load. A repeated-measures linear model was used to determine if the differences in these parameters among the various experimental conditions were statistically significant (p< .05). RESULTS: Compared with the fractured condition, there was a significant improvement in the SAVB, MCVBH, and wedge angle under a physiologically relevant 1,000-N compressive load applied after kyphoplasty. There was no statistically significant difference between treatment with CaP or PMMA. CONCLUSIONS: The structural properties of CaP-augmented VBs are similar to those of PMMA-augmented VBs. Our study indicated that, after at least 15 minutes of setting, a fractured 2FSU specimen treated with kyphoplasty with PMMA or CaP could withstand physiologically relevant loading.


Subject(s)
Bone Cements/therapeutic use , Calcium Phosphates/therapeutic use , Fractures, Compression/surgery , Spinal Fractures/surgery , Vertebroplasty/methods , Adult , Aged , Aged, 80 and over , Cadaver , Compressive Strength , Female , Humans , Male , Materials Testing , Middle Aged
3.
J Biomed Mater Res A ; 81(4): 838-46, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17236211

ABSTRACT

We investigated the histological and compressive properties of three different calcium phosphate cements (CPCs) using a sheep vertebral bone void model. One of the CPCs contained barium sulfate to enhance its radiopacity. Bone voids were surgically created in the lumbar region of 23 ovine spines - L3, L4, and L5 (n = 69 total vertebral bodies) - and the voids were filled with one of the three CPCs. A fourth group consisted of whole intact vertebrae. Histologic evaluation was performed for 30 of the 69 vertebrae 2 or 4 months after surgery along with radiographic evaluation. Compressive testing was performed on 39 vertebrae 4 months after surgery along with micro-CT analysis. All three CPCs were biocompatible and extremely osteoconductive. Osteoclasts associated with adjacent bone formation suggest that each cement can undergo slow resorption and replacement by bone and bone marrow. Compressive testing did not reveal a significant difference in the ultimate strength, ultimate strain, and structural modulus, among the three CPCs and intact whole vertebrae. Micro-CT analysis revealed good osseointegration between all three CPCs and adjacent bone. The barium sulfate did not affect the CPCs biocompatibility or mechanical properties. These results suggest that CPC might be a good alternative to polymethylmethacrylate for selected indications.


Subject(s)
Bone Cements/chemistry , Bone Cements/metabolism , Calcium Phosphates/chemistry , Calcium Phosphates/metabolism , Spine/cytology , Animals , Calcification, Physiologic , Compressive Strength , Models, Animal , Sheep, Domestic , Spine/diagnostic imaging , Tomography, X-Ray Computed
4.
J Orthop Res ; 20(5): 1106-14, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12382979

ABSTRACT

The effects of a pulsed electromagnetic field (PEMF) on late bone healing phases using an osteotomy gap model in the canine mid-tibia were investigated. A transverse mid-diaphyseal tibial osteotomy with a 2-mm gap was performed unilaterally in 12 adult mixed-breed dogs and stabilized with external fixation. Animals in the variable group (n = 6) were treated with PEMF for 1 h daily starting 4 weeks after surgery for a total of 8 weeks, whereas no stimulation signal was generated in the control group (n = 6). Functional load-bearing and radiographic assessments were conducted time-sequentially until euthanasia 12 weeks after surgery. Torsional tests and an analysis of undecalcified histology were performed on the retrieved mid-tibial diaphysis containing the osteotomy site. In the PEMF group, load-bearing of the operated limb recovered earlier when compared to the control group (p < 0.05). Load-bearing in the PEMF group at 8 weeks was greater than in the control group (p < 0.02). The periosteal callus area increased following surgery at 6 weeks (p < 0.05) and thereafter (p < 0.01) in the PEMF group, while a significant increase was observed at 8 and 10 weeks after surgery (p < 0.05) in the control group. Both the normalized maximum torque and torsional stiffness of the PEMF group were significantly greater than those of the control group (p < 0.04 and p < 0.007, respectively). Histomorphometric analyses revealed greater new-bone formation (p < 0.05) in the osteotomy gap tissue and increased mineral apposition rate (p < 0.04) and decreased porosity in the cortex adjacent to the osteotomy line (p < 0.02) in the PEMF group. PEMF stimulation of 1 h per day for 8 weeks provided faster recovery of load-bearing, a significant increase in new bone formation, and a higher mechanical strength of the healing mid-tibial osteotomy. This study revealed enhancing effects of PEMF on callus formation and maturation in the late-phase of bone healing.


Subject(s)
Electric Stimulation Therapy , Electromagnetic Fields , Fracture Healing , Osteotomy , Tibia/injuries , Animals , Disease Models, Animal , Dogs , Male , Radiography , Stress, Mechanical , Tibia/diagnostic imaging , Tibia/physiology , Time Factors , Torque , Treatment Outcome , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...