Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(48): eabi5584, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34826240

ABSTRACT

Architectured materials offer tailored mechanical properties but are limited in engineering applications due to challenges in maintaining toughness across their attachments. The enthesis connects tendon and bone, two vastly different architectured materials, and exhibits toughness across a wide range of loadings. Understanding the mechanisms by which this is achieved could inform the development of engineered attachments. Integrating experiments, simulations, and previously unexplored imaging that enabled simultaneous observation of mineralized and unmineralized tissues, we identified putative mechanisms of enthesis toughening in a mouse model and then manipulated these mechanisms via in vivo control of mineralization and architecture. Imaging uncovered a fibrous architecture within the enthesis that controls trade-offs between strength and toughness. In vivo models of pathology revealed architectural adaptations that optimize these trade-offs through cross-scale mechanisms including nanoscale protein denaturation, milliscale load-sharing, and macroscale energy absorption. Results suggest strategies for optimizing architecture for tough bimaterial attachments in medicine and engineering.

2.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33127677

ABSTRACT

The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies.


Subject(s)
Hedgehog Proteins , Tendons , Cilia , Signal Transduction , Tendons/physiology
3.
J Bone Miner Res ; 35(8): 1494-1503, 2020 08.
Article in English | MEDLINE | ID: mdl-32227614

ABSTRACT

The enthesis is a mineralized fibrocartilage transition that attaches tendon to bone and is vital for musculoskeletal function. Despite recent studies demonstrating the necessity of muscle loading for enthesis formation, the mechanisms that regulate enthesis formation and mechanoresponsiveness remain unclear. Therefore, the current study investigated the role of the gap junction protein connexin 43 in these processes by deleting Gja1 (the Cx43 gene) in the tendon and enthesis. Compared with their wild-type (WT) counterparts, mice lacking Cx43 showed disrupted entheseal cell alignment, reduced mineralized fibrocartilage, and impaired biomechanical properties of the supraspinatus tendon entheses during postnatal development. Cx43-deficient mice also exhibited reduced ability to complete a treadmill running protocol but no apparent deficits in daily activity, metabolic indexes, shoulder muscle size, grip strength, and major trabecular bone properties of the adjacent humeral head. To examine enthesis mechanoresponsiveness, young adult mice were subjected to modest treadmill exercise. Gja1 deficiency in the tendon and enthesis reduced entheseal anabolic responses to treadmill exercise: WT mice had increased expression of Sox9, Ihh, and Gli1 and increased Brdu incorporation, whereas Cx43-deficient mice showed no changes or decreased levels with exercise. Collectively, the results demonstrated an essential role for Cx43 in postnatal tendon enthesis formation, function, and response to loading; results further provided evidence implicating a link between Cx43 function and the hedgehog signaling pathway. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Connexin 43 , Hedgehog Proteins , Tendons/growth & development , Animals , Bone and Bones , Connexin 43/genetics , Mice , Muscles
4.
J Biomech ; 104: 109705, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32247525

ABSTRACT

Accurate determination of the fraction of a tissue's volume occupied by cells is critical for studying tissue development, pathology, and biomechanics. For example, homogenization methods that predict the function and responses of tissues based upon the properties of the tissue's constituents require estimates of cell volume fractions. A common way to estimate cellular volume fraction is to image cells in thin, planar histologic sections, and then invoke either the Delesse or the Glagolev principle to estimate the volume fraction from the measured area fraction. The Delesse principle relies upon the observation that for randomly aligned, identical features, the expected value of the observed area fraction of a phase equals the volume fraction of that phase, and the Glagolev principle relies on a similar observation for random rather than planar sampling. These methods are rigorous for analysis of a polished, opaque rock sections and for histologic sections that are thin compared to the characteristic length scale of the cells. However, when histologic slices cannot be cut sufficiently thin, a bias will be introduced. Although this bias - known as the Holmes effect in petrography - has been resolved for opaque spheres in a transparent matrix, it has not been addressed for histologic sections presenting the opposite problem, namely transparent cells in an opaque matrix. In this note, we present a scheme for correcting the bias in volume fraction estimates for transparent components in a relatively opaque matrix.


Subject(s)
Cell Size , Biomechanical Phenomena
5.
Bone ; 131: 115152, 2020 02.
Article in English | MEDLINE | ID: mdl-31730829

ABSTRACT

Despite a wealth of data on the effects of spaceflight on tendons and bones, little is known about its effects on the interfacial tissue between these two structures, the enthesis. Mice were sent to space on three separate missions: STS-131, STS-135, and Bion-M1 to determine how spaceflight affects the composition, structure, mechanics, and gene expression of the humerus-supraspinatus and calcaneus-Achilles entheses. At the nanoscale, spaceflight resulted in decreased carbonate levels in the bone, likely due to increased remodeling, as suggested by increased expression of genes related to osteoclastogenesis (CatK, Tnfsf11) and mature osteoblasts (Col1, Osc). Tendons showed a shift in collagen fibril size towards smaller diameters that may have resulted from increased expression of genes related to collagen degradation (Mmp3, Mmp13). These nanoscale changes did not result in micro- and milliscale changes to the structure and mechanics of the enthesis. There were no changes in bone volume, trabecular structure, failure load, or stiffness with spaceflight. This lack of tissue-level change may be anatomy based, as extremities may be less sensitive to spaceflight than central locations such as vertebrae, yet results highlight that the tendon enthesis may be robust against negative effects of spaceflight.


Subject(s)
Space Flight , Tendons , Animals , Bone and Bones , Extracellular Matrix , Mice , Spine
6.
J Orthop Res ; 37(3): 779-788, 2019 03.
Article in English | MEDLINE | ID: mdl-30644575

ABSTRACT

Obesity is a primary risk factor for osteoarthritis (OA), and previous studies have shown that dietary content may play an important role in the pathogenesis of cartilage and bone in knee OA. Several previous studies have shown that the ratio of ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and saturated fatty acids can significantly influence bone structure and OA progression. However, the influence of obesity or dietary fatty acid content on shoulder OA is not well understood. The goal of this study was to investigate the role of dietary fatty acid content on bone and cartilage structure in the mouse shoulder in a model of diet-induced obesity. For 24 weeks, mice were fed control or high-fat diets supplemented with ω-3 PUFAs, ω-6 PUFAs, or saturated fatty acids. The humeral heads were analyzed for bone morphometry and mineral density by microCT. Cartilage structure and joint synovitis were determined by histological grading, and microscale mechanical properties of the cartilage extracellular and pericellular matrices were quantified using atomic force microscopy. Diet-induced obesity significantly altered bone morphology and mineral density in a manner that was dependent on dietary free fatty acid content. In general, high-fat diet groups showed decreased bone quality, with the ω-3 diet being partially protective. Cartilage mechanical properties and OA scores showed no changes with obesity or diet. These findings are consistent with clinical literature showing little if any relationship between obesity and shoulder OA (unlike knee OA), but suggest that diet-induced obesity may influence other joint tissues. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids, Omega-3/physiology , Obesity/complications , Osteoarthritis/etiology , Animals , Cartilage, Articular/diagnostic imaging , Disease Models, Animal , Humerus/diagnostic imaging , Male , Mice, Inbred C57BL , Obesity/diagnostic imaging , Osteoarthritis/diagnostic imaging , X-Ray Microtomography
7.
Acta Biomater ; 83: 302-313, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30342287

ABSTRACT

The musculoskeletal system is sensitive to its loading environment; this is of particular concern under conditions such as disuse, paralysis, and extended-duration space flight. Although structural and mechanical changes to tendon and bone following paralysis and disuse are well understood, there is a pressing need to understand how this unloading affects the bone-tendon interface (enthesis); the location most prone to tears and injury. We therefore elucidated these effects of unloading in the entheses of adult mice shoulders that were paralyzed for 21 days by treatment with botulinum toxin A. Unloading significantly increased the extent of mechanical failure and was associated with structural changes across hierarchical scales. At the millimeter scale, unloading caused bone loss. At the micrometer scale, unloading decreased bioapatite crystal size and crystallographic alignment in the enthesis. At the nanometer scale, unloading induced compositional changes that stiffened the bioapatite/collagen composite tissue. Mathematical modeling and mechanical testing indicated that these factors combined to increase local elevations of stress while decreasing the ability of the tissue to absorb energy prior to failure, thereby increasing injury risk. These first observations of the multiscale effects of unloading on the adult enthesis provide new insight into the hierarchical features of structure and composition that endow the enthesis with increased resistance to failure. STATEMENT OF SIGNIFICANCE: The musculoskeletal system is sensitive to its loading environment; this is of particular concern under conditions such as disuse, paralysis, and extended-duration space flight. Although changes to tendon and bone following paralysis are understood, there is a pressing need to clarify how unloading affects the bone-tendon interface (enthesis), which is the location most prone to tears and injury. We elucidated the effects of enthesis unloading in adult mice shoulders showing, for the first time, that unloading significantly increased the risk and extent of mechanical failure and was associated with structural changes across hierarchical scales. These observations provide new insight into the hierarchical features of structure and composition that endow the enthesis with resilience. This knowledge can be used to develop more targeted treatments to improve mobility and function.


Subject(s)
Models, Biological , Rotator Cuff/physiology , Tendons/physiology , Animals , Male , Mice , Weight-Bearing
8.
Acta Biomater ; 80: 217-227, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30240954

ABSTRACT

As the fundamental structural protein in mammals, collagen transmits cyclic forces that are necessary for the mechanical function of tissues, such as bone and tendon. Although the tissue-level mechanical behavior of collagenous tissues is well understood, the response of collagen at the nanometer length scales to cyclical loading remains elusive. To address this major gap, we cyclically stretched individual reconstituted collagen fibrils, with average diameter of 145 ±â€¯42 nm, to small and large strains in the partially hydrated conditions of 60% relative humidity. It is shown that cyclical loading results in large steady-state hysteresis that is reached immediately after the first loading cycle, followed thereafter by limited accumulation of inelastic strain and constant initial elastic modulus. Cyclic loading above 20% strain resulted in 70% increase in tensile strength, from 638 ±â€¯98 MPa to 1091 ±â€¯110 MPa, and 70% increase in toughness, while maintaining the ultimate tensile strain of collagen fibrils not subjected to cyclic loading. Throughout cyclic stretching, the fibrils maintained a steady-state hysteresis, yielding loss coefficients that are 5-10 times larger than those of known homogeneous materials in their modulus range, thus establishing damping of nanoscale collagen fibrils as a major component of damping in tissues. STATEMENT OF SIGNIFICANCE: It is shown that steady-state energy dissipation occurs in individual collagen fibrils that are the building blocks of hard and soft tissues. To date, it has been assumed that energy dissipation in tissues takes place mainly at the higher length scales of the tissue hierarchy due to interactions between collagen fibrils and fibers, and in limited extent inside collagen fibrils. It is shown that individual collagen fibrils need only a single loading cycle to assume a highly dissipative, steady-state, cyclic mechanical response. Mechanical cycling at large strains leads to 70% increase in mechanical strength and values exceeding those of engineering steels. The same cyclic loading conditions also lead to 70% increase in toughness and loss properties that are 5-10 times higher than those of engineering materials with comparable stiffness.


Subject(s)
Fibrillar Collagens/chemistry , Mammals/metabolism , Animals , Biomechanical Phenomena , Cattle , Elastic Modulus , Thermodynamics
9.
FASEB J ; 31(12): 5466-5477, 2017 12.
Article in English | MEDLINE | ID: mdl-28821629

ABSTRACT

Mechanical loading is necessary for the development and maintenance of the musculoskeletal system. Removal of loading via microgravity, paralysis, or bed rest leads to rapid loss of muscle mass and function; however, the molecular mechanisms that lead to these changes are largely unknown, particularly for the spaceflight (SF) microgravity environment. Furthermore, few studies have explored these effects on the shoulder, a dynamically stabilized joint with a large range of motion; therefore, we examined the effects of microgravity on mouse shoulder muscles for the 15-d Space Transportation System (STS)-131, 13-d STS-135, and 30-d Bion-M1 missions. Mice from STS missions were euthanized within 4 h after landing, whereas mice from the Bion-M1 mission were euthanized within 14 h after landing. The motion-generating deltoid muscle was more sensitive to microgravity than the joint-stabilizing rotator cuff muscles. Mice from the STS-131 mission exhibited reduced myogenic (Myf5 and -6) and adipogenic (Pparg, Cebpa, and Lep) gene expression, whereas either no change or an increased expression of these genes was observed in mice from the Bion-M1 mission. In summary, muscle responses to microgravity were muscle-type specific, short-duration SF caused dramatic molecular changes to shoulder muscles and responses to reloading upon landing were rapid.-Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., Thomopoulos, S. Effects of spaceflight on the muscles of the murine shoulder.


Subject(s)
Muscle, Skeletal/metabolism , Space Flight , Animals , Body Weight/genetics , Body Weight/physiology , Female , Male , Mice , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Proteomics , Reverse Transcriptase Polymerase Chain Reaction , Rotator Cuff/metabolism , Shoulder , Weightlessness , X-Ray Microtomography
10.
Development ; 144(7): 1159-1164, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28219952

ABSTRACT

The tendon enthesis originates from a specific pool of hedgehog-active Gli1+ progenitor cells that differentiate and produce mineralized fibrocartilage. The current study investigated the regenerative capacity of this cell population by comparing the responses of early postnatal and mature entheses to injury. Lineage tracing studies demonstrated that the original Gli1+ cell population had the capacity to heal immature entheses after injury, but this capacity was lost after the cells differentiated into mature fibrochondrocytes. To further examine the involvement of Gli1+ cells and hedgehog signaling in enthesis healing, Gli1 expression was examined via lineage tracing approaches and the effect of Smo deletion was examined in the injured entheses. Immature injured entheses retained high levels of Gli1 expression, a marker of hedgehog activation, consistent with non-injured controls. In contrast, injured mature entheses had few Gli1+ cells early in the healing process, with limited recovery of the cell population later in the healing process. These results suggest that the presence of activated hedgehog signaling in enthesis cells early in the healing process may enhance healing of enthesis injuries by mimicking developmental processes.


Subject(s)
Regeneration , Stem Cells/cytology , Tendons/physiology , Zinc Finger Protein GLI1/metabolism , Animals , Cell Differentiation , Cell Lineage , Mice , Wound Healing
11.
Acta Biomater ; 56: 25-35, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28088669

ABSTRACT

The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. STATEMENT OF SIGNIFICANCE: The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue.


Subject(s)
Bone Density , Elastic Modulus , Humeral Head/chemistry , Tendons/chemistry , Animals , Female , Mice
12.
Dev Biol ; 405(1): 96-107, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26141957

ABSTRACT

The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage.


Subject(s)
Fibrocartilage/cytology , Growth Differentiation Factor 5/metabolism , Hedgehog Proteins/metabolism , Minerals/metabolism , Signal Transduction , Stem Cells/cytology , Animals , Bone Marrow/pathology , Bone Resorption/pathology , Bone Resorption/physiopathology , Bone and Bones/physiology , Calcification, Physiologic , Cell Differentiation , Chondrocytes/metabolism , Clone Cells , Collagen/metabolism , Epiphyses/pathology , Integrases/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice , Models, Biological , Osteoclasts/metabolism , Patella/physiology , Staining and Labeling , Stem Cells/metabolism , Tendons/physiology , Zinc Finger Protein GLI1
13.
Biophys J ; 108(2): 431-7, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25606690

ABSTRACT

Reattachment and healing of tendon to bone poses a persistent clinical challenge and often results in poor outcomes, in part because the mechanisms that imbue the uninjured tendon-to-bone attachment with toughness are not known. One feature of typical tendon-to-bone surgical repairs is direct attachment of tendon to smooth bone. The native tendon-to-bone attachment, however, presents a rough mineralized interface that might serve an important role in stress transfer between tendon and bone. In this study, we examined the effects of interfacial roughness and interdigital stochasticity on the strength and toughness of a bimaterial interface. Closed form linear approximations of the amplification of stresses at the rough interface were derived and applied in a two-dimensional unit-cell model. Results demonstrated that roughness may serve to increase the toughness of the tendon-to-bone insertion site at the expense of its strength. Results further suggested that the natural tendon-to-bone attachment presents roughness for which the gain in toughness outweighs the loss in strength. More generally, our results suggest a pathway for stochasticity to improve surgical reattachment strategies and structural engineering attachments.


Subject(s)
Humerus/physiology , Models, Biological , Rotator Cuff/physiology , Animals , Biomechanical Phenomena , Humerus/chemistry , Humerus/ultrastructure , Mice , Minerals/chemistry , Proteins/chemistry , Rotator Cuff/chemistry , Rotator Cuff/ultrastructure , Stochastic Processes
14.
Development ; 142(1): 196-206, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25516975

ABSTRACT

Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation.


Subject(s)
Fibrocartilage/cytology , Hedgehog Proteins/metabolism , Muscles/physiology , Animals , Animals, Newborn , Biomechanical Phenomena , Botulinum Toxins/toxicity , Calcification, Physiologic , Integrases/metabolism , Mice, Transgenic , Models, Biological , Paralysis/chemically induced , Paralysis/pathology , Signal Transduction , Weight-Bearing , X-Ray Microtomography
15.
Biomech Model Mechanobiol ; 13(5): 973-83, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24370852

ABSTRACT

Mechanical stress is necessary to sustain the mineral content of bone in adults. However, in a developing neonatal mouse, the mineralization of soft tissues progresses despite greatly reduced average mechanical stresses. In adults, these reduced loads would likely lead to bone loss. Although biochemical factors may partly explain these different responses, it is unclear how mineralization is initiated in low load environments. We present here the effect of morphometric data and initial modeling supporting a hypothesis that mechanical factors across several length scales amplify stresses, and we suggest that these stresses are of a level adequate to contribute to mechanical signaling for initiation of mineralization at the developing tendon-to-bone enthesis. A mineral gradient is evident across the insertion from the onset of mineralization. This grading maintains a constant size from early postnatal time points to adulthood. At the tissue level, this grading contributes to reduced stresses in an adult animal and to a minor elevation of stresses in a neonatal animal. At the cellular level, stress concentrations around mineralizing chondrocytes are enhanced in neonatal animals compared with adult animals. The enhancement of stresses around cells at early time points may serve to amplify and transduce low loads in order to initiate mineralization.


Subject(s)
Bone and Bones/physiology , Stress, Mechanical , Tendons/growth & development , Tendons/physiology , Aging/physiology , Animals , Animals, Newborn , Bone and Bones/pathology , Cell Size , Humeral Head/growth & development , Mice , Minerals/metabolism , Models, Biological , Muscles/physiology , Tendons/pathology , Time Factors
16.
PLoS One ; 7(11): e48630, 2012.
Article in English | MEDLINE | ID: mdl-23152788

ABSTRACT

Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral bone formation near the tendon insertion. These conserved and time-varying aspects of interface composition may have important implications for the growth and mechanical stability of the tendon-to-bone attachment throughout development.


Subject(s)
Bone and Bones/metabolism , Minerals/metabolism , Tendons/metabolism , Animals , Bone and Bones/cytology , Bone and Bones/ultrastructure , Calcification, Physiologic , Collagen/metabolism , Extracellular Matrix/metabolism , Mice , Rotator Cuff/metabolism , Tendons/cytology , Tendons/ultrastructure
17.
Nanoscale ; 2(1): 35-44, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20648362

ABSTRACT

Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.


Subject(s)
Nanofibers/chemistry , Nerve Regeneration , Tissue Engineering , Nanofibers/ultrastructure , Nerve Tissue/growth & development , Porosity
18.
ACS Nano ; 4(1): 35-42, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-19954236

ABSTRACT

Gold nanocages with localized surface plasmon resonance peaks in the near-infrared region exhibited a broad two-photon photoluminescence band extending from 450 to 650 nm when excited by a Ti:sapphire laser at 800 nm. The bright luminescence makes it possible to explore the use of Au nanocages as a new class of optical imaging agents for two-photon microscopy. In this work, we have demonstrated the use of two-photon microscopy as a convenient tool to directly examine the uptake of antibody-conjugated and PEGylated Au nanocages by U87MGwtEGFR cells. We have also correlated the results from two-photon microscopy with the data obtained by inductively coupled plasma mass spectrometry. Combined together, these results indicate that the antibody-conjugated Au nanocages were attached to the surface of the cells through antibody-antigen binding and then internalized into the cells via receptor-mediated endocytosis. The cellular uptake process was dependent on a number of parameters, including incubation time, incubation temperature, size of the Au nanocages, and the number of antibodies immobilized on each nanocage.


Subject(s)
Antibodies/chemistry , Antibodies/metabolism , Gold/chemistry , Mass Spectrometry , Metal Nanoparticles/chemistry , Microscopy , Photons , Animals , Biological Transport , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Spectrophotometry, Ultraviolet
20.
Nat Mater ; 8(12): 935-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19881498

ABSTRACT

Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.


Subject(s)
Gold/chemistry , Infrared Rays , Nanotubes/chemistry , Lasers , Nanotechnology/methods , Polymers/chemistry , Scattering, Radiation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...