Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37116212

ABSTRACT

Evolutionary perspectives on the deployment of immune factors following infection have been shaped by studies on a limited number of biomedical model systems with a heavy emphasis on vertebrate species. Although their contributions to contemporary immunology cannot be understated, a broader phylogenetic perspective is needed to understand the evolution of immune systems across Metazoa. In our study, we leverage differential gene expression analyses to identify genes implicated in the antiviral immune response of the acorn worm hemichordate, Saccoglossus kowalevskii, and place them in the context of immunity evolution within deuterostomes-the animal clade composed of chordates, hemichordates, and echinoderms. Following acute exposure to the synthetic viral double-stranded RNA analog, poly(I:C), we show that S. kowalevskii responds by regulating the transcription of genes associated with canonical innate immunity signaling pathways (e.g., nuclear factor κB and interferon regulatory factor signaling) and metabolic processes (e.g., lipid metabolism), as well as many genes without clear evidence of orthology with those of model species. Aggregated across all experimental time point contrasts, we identify 423 genes that are differentially expressed in response to poly(I:C). We also identify 147 genes with altered temporal patterns of expression in response to immune challenge. By characterizing the molecular toolkit involved in hemichordate antiviral immunity, our findings provide vital evolutionary context for understanding the origins of immune systems within Deuterostomia.


Subject(s)
Chordata, Nonvertebrate , Chordata , Animals , Phylogeny , Antiviral Agents , Vertebrates , Echinodermata , Chordata, Nonvertebrate/genetics
2.
Front Cell Infect Microbiol ; 11: 671926, 2021.
Article in English | MEDLINE | ID: mdl-34414128

ABSTRACT

Obesity has increased at an alarming rate over the past two decades in the United States. In addition to increased body mass, obesity is often accompanied by comorbidities such as Type II Diabetes Mellitus and metabolic dysfunction-associated fatty liver disease, with serious impacts on public health. Our understanding of the role the intestinal microbiota in obesity has rapidly advanced in recent years, especially with respect to the bacterial constituents. However, we know little of when changes in these microbial populations occur as obesity develops. Further, we know little about how other domains of the microbiota, namely bacteriophage populations, are affected during the progression of obesity. Our goal in this study was to monitor changes in the intestinal microbiome and metabolic phenotype following western diet feeding. We accomplished this by collecting metabolic data and fecal samples for shotgun metagenomic sequencing in a mouse model of diet-induced obesity. We found that after two weeks of consuming a western diet (WD), the animals weighed significantly more and were less metabolically stable than their chow fed counterparts. The western diet induced rapid changes in the intestinal microbiome with the most pronounced dissimilarity at 12 weeks. Our study highlights the dynamic nature of microbiota composition following WD feeding and puts these events in the context of the metabolic status of the mammalian host.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Obesity , Phenotype
3.
Front Immunol ; 11: 614697, 2020.
Article in English | MEDLINE | ID: mdl-33628207

ABSTRACT

It is widely accepted that infection and immune response incur significant metabolic demands, yet the respective demands of specific immune responses to live pathogens have not been well delineated. It is also established that upon activation, metabolic pathways undergo shifts at the cellular level. However, most studies exploring these issues at the systemic or cellular level have utilized pathogen associated molecular patterns (PAMPs) that model sepsis, or model antigens at isolated time points. Thus, the dynamics of pathogenesis and immune response to a live infection remain largely undocumented. To better quantitate the metabolic demands induced by infection, we utilized a live pathogenic infection model. Mice infected with Listeria monocytogenes were monitored longitudinally over the course of infection through clearance. We measured systemic metabolic phenotype, bacterial load, innate and adaptive immune responses, and cellular metabolic pathways. To further delineate the role of adaptive immunity in the metabolic phenotype, we utilized two doses of bacteria, one that induced both sickness behavior and protective (T cell mediated) immunity, and the other protective immunity alone. We determined that the greatest impact to systemic metabolism occurred during the early immune response, which coincided with the greatest shift in innate cellular metabolism. In contrast, during the time of maximal T cell expansion, systemic metabolism returned to resting state. Taken together, our findings demonstrate that the timing of maximal metabolic demand overlaps with the innate immune response and that when the adaptive response is maximal, the host has returned to relative metabolic homeostasis.


Subject(s)
Immunity, Innate , Listeria monocytogenes/immunology , Listeriosis/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Bacterial Load , Body Weight , Energy Metabolism , Female , Immunity, Cellular , Lethargy/metabolism , Lethargy/microbiology , Listeriosis/microbiology , Listeriosis/pathology , Liver/microbiology , Mice , Oxygen Consumption , Spleen/microbiology
4.
J Vis Exp ; (138)2018 08 10.
Article in English | MEDLINE | ID: mdl-30148496

ABSTRACT

Cultures of monocyte-derived dendritic cells (moDC) generated from mouse bone marrow using Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) have recently been recognized to be more heterogeneous than previously appreciated. These cultures routinely contain moDC as well monocyte-derived macrophages (moMac), and even some less developed cells such as monocytes. The goal of this protocol is to provide a consistent method for identification and separation of the many cell types present in these cultures as they develop, so that their specific functions may be further investigated. The sorting strategy presented here separates cells first into four populations based on expression of Ly6C and CD115, both of which are expressed transiently by cells as they develop in GM-CSF-driven culture. These four populations include Common myeloid progenitors or CMP (Ly6C-, CD115-), granulocyte/macrophage progenitors or GMP (Ly6C+, CD115-), monocytes (Ly6C+, CD115+), and monocyte-derived macrophages or moMac (Ly6C-, CD115+). CD11c is also added to the sorting strategy to distinguish two populations within the Ly6C-, CD115- population: CMP (CD11c-) and moDC (CD11c+). Finally, two populations may be further distinguished within the Ly6C-, CD115+ population based on the level of MHC class II expression. MoMacs express lower levels of MHC class II, while a monocyte-derived DC precursor (moDP) expresses higher MHC class II. This method allows for the reliable isolation of several developmentally distinct populations in numbers sufficient for a variety of functional and developmental analyses. We highlight one such functional readout, the differential responses of these cell types to stimulation with Pathogen-Associated Molecular Patterns (PAMPs).


Subject(s)
Bone Marrow Cells/metabolism , Cell Separation/methods , Dendritic Cells/metabolism , Monocytes/metabolism , Myeloid Progenitor Cells/metabolism , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Dendritic Cells/cytology , Mice , Monocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...