Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 8622, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25722249

ABSTRACT

Mechanotransduction has been divided into mechanotransmission, mechanosensing, and mechanoresponse, although how a cell performs all three functions using the same set of structural components is still highly debated. Here, we bridge the gap between emerging molecular and systems-level understandings of mechanotransduction through a multiscale model linking these three phases. Our model incorporates a discrete network of actin filaments and associated proteins that responds to stretching through geometric relaxation. We assess three potential activating mechanisms at mechanosensitive crosslinks as inputs to a mixture model of molecular release and benchmark each using experimental data of mechanically-induced Rho GTPase FilGAP release from actin-filamin crosslinks. Our results suggest that filamin-FilGAP mechanotransduction response is best explained by a bandpass mechanism favoring release when crosslinking angles fall outside of a specific range. Our model further investigates the difference between ordered versus disordered networks and finds that a more disordered actin network may allow a cell to more finely tune control of molecular release enabling a more robust response.


Subject(s)
Mechanotransduction, Cellular , Actin Cytoskeleton/physiology , Computer Simulation , Cytoskeletal Proteins/physiology , Filamins/physiology , GTPase-Activating Proteins/physiology , Models, Biological
3.
Cell Mol Bioeng ; 5(1): 73-81, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22523521

ABSTRACT

Correlations between altered nuclear shape and disease are empirically observed, but the causes of nuclear dysmorphisms are poorly understood. The nucleoskeleton, which provides the majority of the mechanical stability of the nucleus, is composed primarily of intermediate filaments of lamin proteins. The nucleoskeleton forms a mostly-planar network between the inner nuclear membrane and chromatin. It is unclear if blebs and larger scale changes in nuclear morphology are consequences of reorganization of the nucleoskeleton alone or of other cellular processes. To test this, we computationally recapitulate the lamina network using a mechanical network model created as a network of Hookean springs. A- and B-type lamin filaments were distributed over a spherical surface into distinct networks linked to one another by lamin-associated proteins. Iterative force-based adjustment of the network structure, together with a stochastically modified Bell model of bond breakage and formation, simulates nucleoskeleton reorganization with blebs. The rate of bleb retraction into the nucleus depends on both initial size of the bleb and number of networks being deformed. Our results show that induced blebs are more stable when only one filament component is deformed or when the networks have no interconnections. Also, the kinetics of retraction is influenced by the composition of the bleb. These results match with our experiments and others.

4.
J Theor Biol ; 274(1): 109-19, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21241710

ABSTRACT

Cells are complex, dynamic systems that actively adapt to various stimuli including mechanical alterations. Central to understanding cellular response to mechanical stimulation is the organization of the cytoskeleton and its actin filament network. In this manuscript, we present a minimalistic network Monte Carlo based approach to model actin filament organization under cyclic stretching. Utilizing a coarse-grained model, a filament network is prescribed within a two-dimensional circular space through nodal connections. When cyclically stretched, the model demonstrates that a perpendicular alignment of the filaments to the direction of stretch emerges in response to nodal repositioning to minimize net nodal forces from filament stress states. In addition, the filaments in the network rearrange and redistribute themselves to reduce the overall stress by decreasing their individual stresses. In parallel, we cyclically stretch NIH 3T3 fibroblasts and find a similar cytoskeletal response. With this work, we test the hypothesis that a first-principles mechanical model of filament assembly in a confined space is by itself capable of yielding the remodeling behavior observed experimentally. Identifying minimal mechanisms sufficient to reproduce mechanical influences on cellular structure has important implications in a diversity of fields, including biology, physics, medicine, computer science, and engineering.


Subject(s)
Actin Cytoskeleton/metabolism , Models, Biological , Molecular Dynamics Simulation , Monte Carlo Method , Stress, Mechanical , Animals , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mice , NIH 3T3 Cells
5.
Proc Natl Acad Sci U S A ; 101(36): 13268-72, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15326311

ABSTRACT

Major histocompatibility complex class I molecules present peptides of 8-10 residues to CD8+ T cells. We used 19 predicted proteomes to determine the influence of CD8+ T cell immune surveillance on protein evolution in humans and microbial pathogens by predicting immunopeptidomes, i.e., sets of class I binding peptides present in proteomes. We find that class I peptide binding specificities (i) have had little, if any, influence on the evolution of immunopeptidomes and (ii) do not take advantage of biases in amino acid distribution in proteins other than the concentration of hydrophobic residues in NH(2)-terminal leader sequences.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/metabolism , Peptide Fragments/immunology , Proteome , Animals , Biological Evolution , Humans , Ligands , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...