Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 53(6): 3204-9, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24593871

ABSTRACT

Fluorescent indicators based on ß-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg(2+) and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg(2+) and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg(2+) and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples.


Subject(s)
Adenosine Triphosphate/chemistry , Fluorescent Dyes/chemistry , Magnesium/chemistry , Magnetic Resonance Spectroscopy , X-Ray Diffraction
2.
Chem Mater ; 22(23): 6319-6327, 2010 Sep 11.
Article in English | MEDLINE | ID: mdl-21151704

ABSTRACT

We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films using hydrophobic amines (e.g., aliphatic or semi-fluorinated aliphatic amines). Our results demonstrate a straightforward and substrate-independent approach to the design of superhydrophobic and reactive polymer-based coatings of potential use in a broad range of fundamental and applied contexts.

3.
Inorg Chem ; 49(24): 11261-3, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21090757

ABSTRACT

The novel ligand DIG(3)tren has three N',N''-diisopropylguanidinyl (DIG) moieties. We report on the structures of two cobalt complexes that show how an isopropylamino group from each DIG acts as a flap that can either close over the metal or rotate away from the metal to open up a site for auxiliary ligand binding. Two of the -NH(iPr) flaps are open in pink [Co(DIG(3)tren)(OAc)]OAc (1), and each of these flaps provides a hydrogen bond to stabilize acetate binding to trigonal bipyrimidal cobalt. The flaps are closed in blue [Co(DIG(3)tren)][BPh(4)](2) (2), yielding a rare example of a trigonal (mono)pyramidal [ML](2+) ion.

SELECTION OF CITATIONS
SEARCH DETAIL
...