Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 251: 7-16, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25936849

ABSTRACT

BACKGROUND: Electroencephalography (EEG) is still a widely used imaging tool that combines high temporal resolution with a relatively low cost. Ag/AgCl metal electrodes have been the gold standard for non-invasively monitoring electrical brain activity. Although reliable, these electrodes have multiple drawbacks: they suffer from noise, such as offset potential drift, and usability issues, for example, difficult skin preparation and cross-coupling of adjacent electrodes. NEW METHOD: In order to tackle these issues a prototype Electric Potential Sensor (EPS) device based on an auto-zero operational amplifier was developed and evaluated. The EPS is a novel active ultrahigh impedance capacitively coupled sensor. The absence of 1/f noise makes the EPS ideal for use with signal frequencies of ∼10Hz or less. A comprehensive study was undertaken to compare neural signals recorded by the EPS with a standard commercial EEG system. RESULTS: Quantitatively, highly similar signals were observed between the EPS and EEG sensors for both free running and evoked brain activity with cross correlations of higher than 0.9 between the EPS and a standard benchmark EEG system. COMPARISON WITH EXISTING METHOD(S): These studies comprised measurements of both free running EEG and Event Related Potentials (ERPs) from a commercial EEG system and EPS. CONCLUSIONS: The EPS provides a promising alternative with many added benefits compared to standard EEG sensors, including reduced setup time and elimination of sensor cross-coupling. In the future the scalability of the EPS will allow the implementation of a whole head ultra-dense EPS array.


Subject(s)
Brain Waves/physiology , Brain/physiology , Electrodes , Evoked Potentials/physiology , Visual Perception/physiology , Brain Mapping/instrumentation , Brain Mapping/methods , Electric Impedance , Electroencephalography , Equipment Design , Humans , Photic Stimulation , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...