Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382089

ABSTRACT

Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of eighteen protein subunits and nearly two hundred co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in non-appressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 PSA3. Together, our data support an important but non-essential role of CEPA1 in PSI assembly.

2.
Biochim Biophys Acta Bioenerg ; 1862(7): 148425, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33785316

ABSTRACT

The mitochondrial ATP synthase is producing most of the energy required to support eucaryotic life. It is located in the mitochondrial inner-membrane and couples the dissipation of the proton gradient produced by the electron transfer chain with ATP production. It is composed of two domains, the F1 domain located in the matrix and the FO domain embedded in the inner membrane. The mitochondrial ATP synthase belongs to the F-type ATP synthase family together with bacterial and chloroplastic enzymes. The composition of the mitochondrial ATP synthase is well conserved across species, except in plants where several subunits found in opisthokonts were not identified and additional, plant-specific, subunits were found. The assembly of the F-type ATP synthase has been extensively studied in bacteria, yeast and mammals. The overall assembly pattern is conserved but species-specific steps have been identified. In plant, little is known about the assembly of the mitochondrial ATP synthase. We have mined our previously published complexome profiling dataset in order to identity assembly steps of the ATP synthase in the reference plant Arabidopsis thaliana. Several assembly intermediates were identified and we propose a model for the assembly pathway of the ATP synthase of plant mitochondria. In addition, combining complexome profiling with homology searches, we found that the previously described plant-specific subunits are actually present in other organisms. Overall, our work show that the subunit composition and the assembly pathway of the plant mitochondria ATP synthase are mostly conserved with other mitochondrial enzymes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Proteome/analysis
3.
Plant Physiol ; 176(2): 1485-1508, 2018 02.
Article in English | MEDLINE | ID: mdl-29229697

ABSTRACT

The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis.


Subject(s)
Endopeptidase Clp/metabolism , Nicotiana/enzymology , Proteome , Cell Nucleus/metabolism , Chloroplasts/metabolism , Endopeptidase Clp/genetics , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Proteolysis , Proteomics , RNA Interference , Substrate Specificity , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...