Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202403189, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701048

ABSTRACT

Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning µ-XRD computed tomography to scrutinize Ni-rich layered LiNi0.6Co0.2Mn0.2O2 (NCM622) and Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of µ-XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long-term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain-induced structural degradation during high-voltage cycling, resulting in significant voltage decay and capacity fade. This work holds the potential to fine-tune the microstructure of advanced layered materials and manipulate composite electrode construction in order to enhance the performance of LIBs and beyond.

2.
Dalton Trans ; 52(42): 15326-15333, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37387215

ABSTRACT

The present work describes the dynamic magnetic properties of the complex [(CpAr3)4DyIII2Cl4K2]·3.5(C7H8) (1), synthesized by employing a tri-aryl-substituted cyclopentadienyl ligand (CpAr3), [4,4'-(4-phenylcyclopenta-1,3-diene-1,2-diyl)bis(methylbenzene) = CpAr3H]. Each Dy(III)-metallocene weakly couples via K2Cl4, displaying slow relaxation of magnetization below 14.5 K under zero applied dc field via KD3 energy levels with an energy barrier of 136.9/133.7 cm-1 on the Dy sites. The single-ion axial anisotropy energy barrier is reduced by geometrical distortion due to the coordination of two chloride ions at each Dy centre.

3.
Adv Sci (Weinh) ; 10(11): e2207283, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36794292

ABSTRACT

Polyanion-type phosphate materials, such as M3 V2 (PO4 )3 (M = Li/Na/K), are promising as insertion-type negative electrodes for monovalent-ion batteries including Li/Na/K-ion batteries (lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs)) with fast charging/discharging and distinct redox peaks. However, it remains a great challenge to understand the reaction mechanism of materials upon monovalent-ion insertion. Here, triclinic Mg3 V4 (PO4 )6 /carbon composite (MgVP/C) with high thermal stability is synthesized via ball-milling and carbon-thermal reduction method and applied as a pseudocapacitive negative electrode in LIBs, SIBs, and PIBs. In operando and ex situ studies demonstrate the guest ion-dependent reaction mechanisms of MgVP/C upon monovalent-ion storage due to different sizes. MgVP/C undergoes an indirect conversion reaction to form Mg0 , V0 , and Li3 PO4 in LIBs, while in SIBs/PIBs the material only experiences a solid solution with the reduction of V3+ to V2+ . Moreover, in LIBs, MgVP/C delivers initial lithiation/delithiation capacities of 961/607 mAh g-1 (30/19 Li+ ions) for the first cycle, despite its low initial Coulombic efficiency, fast capacity decay for the first 200 cycles, and limited reversible insertion/deinsertion of 2 Na+ /K+ ions in SIBs/PIBs. This work reveals a new pseudocapacitive material and provides an advanced understanding of polyanion phosphate negative material for monovalent-ion batteries with guest ion-dependent energy storage mechanisms.

4.
Inorg Chem ; 61(1): 554-567, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34931842

ABSTRACT

7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally negative charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related "ion-separated" complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via µ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, respectively, whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by density-functional theory calculations. The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1.

5.
Inorg Chem ; 60(10): 6999-7007, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33938223

ABSTRACT

A new perovskite oxide semiconductor, CaCu3Fe2Ta2O12, was synthesized through a high-pressure and high-temperature approach. The compound possesses an Im3̅ space group, where it crystallizes to an A-site-ordered but B-site partial ordered quadruple perovskite structure. Spin ordering occurs around 150 K owing to the antiferromagnetic coupling between Fe3+ spins and ferromagnetic coupling between Cu2+ spins. The room-temperature dielectric permittivity of CaCu3Fe2Ta2O12 was measured to be approximately 2500 at 1 kHz. More importantly, isothermal frequency-dielectric spectroscopy demonstrates the existence of two dielectric relaxations. Debye-like relaxation is attributed to charge carriers trapped among the oxygen vacancies at low temperatures and Maxwell-Wagner polarization relaxation at high temperatures. CaCu3Fe2Ta2O12 is a new magnetic semiconductor, where A-site ordering is intercorrelated with second-order Jahn-Teller distortion. These findings offer opportunities to design novel perovskite oxides with attractive magnetic and dielectric properties.

6.
Nat Commun ; 10(1): 5365, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772159

ABSTRACT

One major challenge in the field of lithium-ion batteries is to understand the degradation mechanism of high-energy lithium- and manganese-rich layered cathode materials. Although they can deliver 30 % excess capacity compared with today's commercially- used cathodes, the so-called voltage decay has been restricting their practical application. In order to unravel the nature of this phenomenon, we have investigated systematically the structural and compositional dependence of manganese-rich lithium insertion compounds on the lithium content provided during synthesis. Structural, electronic and electrochemical characterizations of LixNi0.2Mn0.6Oy with a wide range of lithium contents (0.00 ≤ x ≤ 1.52, 1.07 ≤ y < 2.4) and an analysis of the complexity in the synthesis pathways of monoclinic-layered Li[Li0.2Ni0.2Mn0.6]O2 oxide provide insight into the underlying processes that cause voltage fading in these cathode materials, i.e. transformation of the lithium-rich layered phase to a lithium-poor spinel phase via an intermediate lithium-containing rock-salt phase with release of lithium/oxygen.

7.
Adv Mater ; 31(26): e1900985, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31012176

ABSTRACT

In order to satisfy the energy demands of the electromobility market, both Ni-rich and Li-rich layered oxides of NCM type are receiving much attention as high-energy-density cathode materials for application in Li-ion batteries. However, due to different stability issues, their longevity is limited. During formation and continuous cycling, especially the electronic and crystal structure suffers from various changes, eventually leading to fatigue and mechanical degradation. In recent years, comprehensive battery research has been conducted at Karlsruhe Institute of Technology, mainly aiming at better understanding the primary degradation processes occurring in these layered transition metal oxides. The characteristic process of formation and mechanisms of fatigue are fundamentally characterized and the effect of chemical composition on cell chemistry, electrochemistry, and cycling stability is addressed on different length scales by use of state-of-the-art analytical techniques, ranging from "standard" characterization tools to combinations of advanced in situ and operando methods. Here, the results are presented and discussed within a broader scientific context.

8.
ACS Appl Mater Interfaces ; 10(49): 43131-43143, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30422620

ABSTRACT

Thin alumina coatings on Li-rich nickel cobalt manganese oxide (Li-rich NCM) particles used as cathode material in Li-ion batteries can improve the capacity retention during cycling. However, the underlying mechanisms are still not fully understood. It is crucial to determine the degree of coverage of the particle's coating on various length scales from micrometer to nanometer and to link it to the electrochemical properties. Alumina coatings applied on Li-rich NCM by atomic layer deposition or by chemical solution deposition were examined. The degree of coverage and the morphology of the particle coatings were investigated by time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy, elemental analysis using inductively coupled plasma optical emission spectrometry, and scanning/transmission electron microscopy. ToF-SIMS allows investigating the coverage of a coating on large length scales with high lateral resolution and a surface sensitivity of a few nanometers. Regardless of the chosen coating route, analytical investigations revealed that the powder particles were not covered by a fully closed and homogenous alumina film. This study shows that a fully dense coating layer is not necessary to achieve an improvement in capacity retention. The results indicate that rather the coating process itself likely causes the improvement of the capacity retention and increases the initial capacity.

9.
Am J Dent ; 26(1): 3-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23724542

ABSTRACT

PURPOSE: To examine laboratory changes of endogenous non-specific fluorescence and color throughout subsurface of tooth structures prior to and following peroxide bleaching. METHODS: Extracted human teeth were cross sectioned and mounted on glass slides. Cross sections were examined for internal color (digital camera) and nonspecific fluorescence (microRaman spectroscopy) throughout the tooth structure at specified locations. Surfaces of sections were then saturation bleached for 70 hours with a gel containing 6% hydrogen peroxide. Cross sections were reexamined for color and non-specific fluorescence changes. RESULTS: Unbleached enamel, dentin-enamel junction and dentin exhibit different CIELab color and non-specific fluorescence properties. Bleaching of teeth produced significant changes in color of internal cross sections and substantial reductions of non-specific fluorescence levels within enamel dentin and DEJ. Enamel and dentin non-specific fluorescence were reduced to common values with bleaching with enamel and the DEJ showing larger reductions than dentin.


Subject(s)
Hydrogen Peroxide/therapeutic use , Tooth Bleaching Agents/therapeutic use , Tooth Bleaching/methods , Tooth/drug effects , Color , Dental Enamel/anatomy & histology , Dental Enamel/drug effects , Dentin/anatomy & histology , Dentin/drug effects , Fluorescence , Humans , Microspectrophotometry/methods , Spectrum Analysis, Raman/methods , Time Factors , Tooth/anatomy & histology
10.
Inorg Chem ; 46(2): 378-80, 2007 Jan 22.
Article in English | MEDLINE | ID: mdl-17279814

ABSTRACT

A spin-dimer analysis of the anisotropic spin-exchange interactions in the distorted wolframite-type oxides CuWO4, CuMoO4-III, and Cu(Mo(0.25)W(0.75))O4 was performed by Koo and Whangbo (Inorg. Chem. 2001, 40, 2161-2169). For Cu(Mo(0.25)W(0.75))O4, a magnetic structure with a magnetic unit cell doubled along the a and b axes has been predicted, but neutron powder diffraction on Cu(Mo(0.25)W(0.75))O4 did not confirm such a magnetic structure. In the present work, a detailed spin-dimer analysis, considering the influence of particular atomic structure parameters, finally revealed that a wrong coordinate transformation of the Cu z coordinate of the Cu(Mo(0.25)W(0.75))O4 structure is responsible for the prediction of the new, hypothetical magnetic structure. The deviation from the correct value is too small to be recognized by unreasonable bond lengths or angles but is sufficient to change one specific calculated value that is responsible for the prediction of the hypothetical magnetic structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...