Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 142(2): 241-247, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31240593

ABSTRACT

The application of metabolic radiolabeling techniques to plant tetrapyrroles, i.e., chlorophyll and hemes, is complicated by the difficulty of obtaining sufficient quantities of radiolabeled aminolevulinic acid (ALA). ALA, the first committed intermediate in the tetrapyrrole biosynthetic pathway, is inconvenient to synthesize chemically and is generally not produced in significant quantities in biological systems. Radiolabeled ALA is therefore usually quite expensive and available only in limited quantities. Here, we describe bulk biosynthesis and purification of 14C-labeled ALA from 14C glycine. We first cloned ALA synthase (ALAS) from Rhodobacter sphaeroides into an expression vector for expression and purification as a fusion with maltose-binding protein. We then used the purified ALAS to synthesize ALA in vitro from 14C-labeled glycine and succinyl-coenzyme A. Finally, we used ion exchange chromatography to separate the ALA product from the crude reaction. We achieved conversion and recovery efficiencies of 80-90%, and chlorophyll radiolabeling experiments with the 14C ALA product revealed no detectable non-specific incorporation into proteins. The ability to economically produce robust quantities of 14C ALA using common methodologies provides a new tool for working with tetrapyrroles, which includes both hemes and chlorophylls and their respective binding proteins. This tool allows the specific detection and quantification of the tetrapyrrole of interest from standard acrylamide gels or hybridization transfer membranes via radiographic imaging, which enables a wide array of experiments involving spatial and temporal resolution of the movement of pigments as they are synthesized, incorporated into their target binding proteins, and eventually degraded.


Subject(s)
Aminolevulinic Acid/metabolism , Carbon Radioisotopes/metabolism , Staining and Labeling , Tetrapyrroles/metabolism , 5-Aminolevulinate Synthetase/metabolism , Glycine/metabolism , Rhodobacter sphaeroides/enzymology
2.
Photosynth Res ; 136(1): 125, 2018 04.
Article in English | MEDLINE | ID: mdl-29404825

ABSTRACT

The funding statement in the last sentence of the Acknowledgements section in the original publication is incorrect. The corrected Acknowledgements section is printed below.

3.
Photosynth Res ; 136(1): 107-124, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28975583

ABSTRACT

Photosystem II is known to be a highly dynamic multi-protein complex that participates in a variety of regulatory and repair processes. In contrast, photosystem I (PSI) has, until quite recently, been thought of as relatively static. We report the discovery of plant PSI-LHCII megacomplexes containing multiple LHCII trimers per PSI reaction center. These PSI-LHCII megacomplexes respond rapidly to changes in light intensity, as visualized by native gel electrophoresis. PSI-LHCII megacomplex formation was found to require thylakoid stacking, and to depend upon growth light intensity and leaf age. These factors were, in turn, correlated with changes in PSI/PSII ratios and, intriguingly, PSI-LHCII megacomplex dynamics appeared to depend upon PSII core phosphorylation. These findings suggest new functions for PSI and a new level of regulation involving specialized subpopulations of photosystem I which have profound implications for current models of thylakoid dynamics.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Light , Photosystem I Protein Complex/metabolism , Plant Development/radiation effects , Plants/metabolism , Plants/radiation effects , Darkness , Electrons , Phosphorylation/radiation effects , Photosystem II Protein Complex/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Protein Subunits/metabolism , Thylakoids/metabolism , Thylakoids/radiation effects
4.
Plant Physiol ; 155(4): 1769-78, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21311030

ABSTRACT

Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various cellular compartments. A number of photosynthesis-related proteins are among this group of LysAc proteins, including photosystem II (PSII) subunits, light-harvesting chlorophyll a/b-binding proteins (LHCb), Rubisco large and small subunits, and chloroplastic ATP synthase (ß-subunit). Using two-dimensional native green/sodium dodecyl sulfate gels, the loosely PSII-bound LHCb was separated from the LHCb that is tightly bound to PSII and shown to have substantially higher level of LysAc, implying that LysAc may play a role in distributing the LHCb complexes. Several potential LysAc sites were identified on eukaryotic elongation factor-1A (eEF-1A) by liquid chromatography/mass spectrometry and using sequence- and modification-specific antibodies the acetylation of Lys-227 and Lys-306 was established. Lys-306 is contained within a predicted calmodulin-binding sequence and acetylation of Lys-306 strongly inhibited the interactions of eEF-1A synthetic peptides with calmodulin recombinant proteins in vitro. These results suggest that LysAc of eEF-1A may directly affect regulatory properties and localization of the protein within the cell. Overall, these findings reveal the possibility that reversible LysAc may be an important and previously unknown regulatory mechanism of a large number of nonhistone proteins affecting a wide range of pathways and processes in Arabidopsis and likely in all plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Acetylation , Chromatography, Liquid , Light-Harvesting Protein Complexes/metabolism , Peptide Elongation Factor 1/metabolism , Photosystem II Protein Complex/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...