Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(36): e2301526, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300308

ABSTRACT

High-entropy alloys (HEAs) with their almost limitless number of possible compositions have raised widespread attention in material science. Next to wear and corrosion resistive coatings, their application as tunable electrocatalysts has recently moved into the focus. On the other hand, fundamental properties of HEA surfaces like atomic and electronic structure, surface segregation and diffusion as well as adsorption on HEA surfaces are barely explored. The lack of research is caused by the limited availability of single-crystalline samples. In the present work, the epitaxial growth of face centered cubic (fcc) CoCrFeNi films on MgO(100) is reported. Their characterization by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) demonstrates that the layers with a homogeneous and close to equimolar elemental composition are oriented in [100] direction and aligned with the substrate to which they form an abrupt interface. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and angle-resolved photoelectron spectroscopy are employed to study chemical composition and atomic and electronic structure of CoCrFeNi(100). It is demonstrated that epitaxially grown HEA films have the potential to fill the sample gap, allowing for fundamental studies of properties of and processes on well-defined HEA surfaces over the full compositional space.

2.
ACS Appl Mater Interfaces ; 13(20): 23616-23626, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33978421

ABSTRACT

Molybdenum-nickel materials are catalysts of industrial interest for the hydrogen evolution reaction (HER). Well-characterized surfaces of the single-phase intermetallic compounds Ni7Mo7, Ni3Mo, and Ni4Mo were subjected to accelerated durability tests (ADTs) and thorough characterization to unravel whether crystallographic ordering affects the activity. Their intrinsic instability leads to molybdenum leaching, resulting in higher specific surface areas and nickel-enriched surfaces. These are more prone to form Ni(OH)2 layers, which leads to deactivation of the Mo-Ni materials. The crystal structure of the intermetallic compounds has, due to the intrinsic instability of the materials in alkaline media, no effect on the activity. Ni7Mo7, identified earlier as durable, proves to be highly unstable in the applied ADTs. The results show that the enhanced activity of unsupported bulk Mo-Ni electrodes can solely be ascribed to increased specific surface areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...