Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948855

ABSTRACT

The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.

2.
ArXiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38584617

ABSTRACT

Tumor spheroids are in vitro three-dimensional, cellular collectives consisting of cancerous cells. Embedding these spheroids in an in vitro fibrous environment, such as a collagen network, to mimic the extracellular matrix (ECM) provides an essential platform to quantitatively investigate the biophysical mechanisms leading to tumor invasion of the ECM. To understand the mechanical interplay between tumor spheroids and the ECM, we computationally construct and study a three-dimensional vertex model for a tumor spheroid that is mechanically coupled to a cross-linked network of fibers. In such a vertex model, cells are represented as deformable polyhedrons that share faces. Some fraction of the boundary faces of the tumor spheroid contain linker springs connecting the center of the boundary face to the nearest node in the fiber network. As these linker springs actively contract, the fiber network remodels. By toggling between fluid-like and solid-like spheroids via changing the dimensionless cell shape index, we find that the spheroid rheology affects the remodeling of the fiber network. More precisely, fluid-like spheroids displace the fiber network more on average near the vicinity of the spheroid than solid-like spheroids. We also find more densification of the fiber network near the spheroid for the fluid-like spheroids. These spheroid rheology-dependent effects are the result of cellular motility due to active cellular rearrangements that emerge over time in the fluid-like spheroids to generate spheroid shape fluctuations. Our results uncover intricate morphological-mechanical interplay between an embedded spheroid and its surrounding fiber network with both spheroid contractile strength and spheroid shape fluctuations playing important roles in the pre-invasion stages of tumor invasion.

3.
Neural Comput ; 36(4): 596-620, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38457749

ABSTRACT

We introduce frequency propagation, a learning algorithm for nonlinear physical networks. In a resistive electrical circuit with variable resistors, an activation current is applied at a set of input nodes at one frequency and an error current is applied at a set of output nodes at another frequency. The voltage response of the circuit to these boundary currents is the superposition of an activation signal and an error signal whose coefficients can be read in different frequencies of the frequency domain. Each conductance is updated proportionally to the product of the two coefficients. The learning rule is local and proved to perform gradient descent on a loss function. We argue that frequency propagation is an instance of a multimechanism learning strategy for physical networks, be it resistive, elastic, or flow networks. Multimechanism learning strategies incorporate at least two physical quantities, potentially governed by independent physical mechanisms, to act as activation and error signals in the training process. Locally available information about these two signals is then used to update the trainable parameters to perform gradient descent. We demonstrate how earlier work implementing learning via chemical signaling in flow networks (Anisetti, Scellier, et al., 2023) also falls under the rubric of multimechanism learning.

4.
PNAS Nexus ; 3(3): pgae092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476665

ABSTRACT

We present analysis of neuronal activity recordings from a subset of neurons in the medial prefrontal cortex of rats before and after the administration of cocaine. Using an underlying modern Hopfield model as a description for the neuronal network, combined with a machine learning approach, we compute the underlying functional connectivity of the neuronal network. We find that the functional connectivity changes after the administration of cocaine with both functional-excitatory and functional-inhibitory neurons being affected. Using conventional network analysis, we find that the diameter of the graph, or the shortest length between the two most distant nodes, increases with cocaine, suggesting that the neuronal network is less robust. We also find that the betweenness centrality scores for several of the functional-excitatory and functional-inhibitory neurons decrease significantly, while other scores remain essentially unchanged, to also suggest that the neuronal network is less robust. Finally, we study the distribution of neuronal activity and relate it to energy to find that cocaine drives the neuronal network towards destabilization in the energy landscape of neuronal activation. While this destabilization is presumably temporary given one administration of cocaine, perhaps this initial destabilization indicates a transition towards a new stable state with repeated cocaine administration. However, such analyses are useful more generally to understand how neuronal networks respond to perturbations.

5.
J Cell Sci ; 136(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37756607

ABSTRACT

Chromatin plays an essential role in the nuclear mechanical response and determining nuclear shape, which maintain nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild-type cells and perturbed cells that presented increased nuclear blebbing. Transcription inhibition suppressed nuclear blebbing for several cell types, nuclear perturbations and transcription inhibitors. Furthermore, transcription inhibition suppressed nuclear bleb formation, bleb stabilization and bleb-based nuclear ruptures. Interestingly, transcription inhibition did not alter the histone H3 lysine 9 (H3K9) modification state, nuclear rigidity, and actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggested that RNA polymerase II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, in a manner separate and distinct from chromatin rigidity.


Subject(s)
Chromatin , RNA Polymerase II , RNA Polymerase II/metabolism , Chromatin/metabolism , Cell Nucleus/metabolism , Transcription, Genetic , Actins/metabolism
6.
ArXiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36747999

ABSTRACT

Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.

7.
bioRxiv ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778225

ABSTRACT

Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.

8.
Phys Rev E ; 106(5-2): 055003, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559459

ABSTRACT

We study geometrical clues of a rigidity transition due to the emergence of a system-spanning state of self-stress in underconstrained systems of individual polygons and spring networks constructed from such polygons. When a polygon with harmonic bond edges and an area spring constraint is subject to an expansive strain, we observe that convexity of the polygon is a necessary condition for such a self-stress. We prove that the cyclic configuration of the polygon is a sufficient condition for the self-stress. This correspondence of geometry and rigidity is akin to the straightening of a one dimensional chain of springs to rigidify it. We predict the onset of the rigidity transition and estimate the transition strain using purely geometrical methods. These findings help determine the rigidity of an area-preserving polygon just by knowing its geometry. Since two-dimensional spring networks can be considered as a network of polygons, we look for similar geometric features in underconstrained spring networks under isotropic expansive strain. We observe that all polygons attain convexity at the rigidity transition such that the fraction of convex, but not cyclic, polygons predicts the onset of the rigidity transition. Acyclic polygons in the network correlate with larger tensions, forming effective force chains.

9.
Phys Rev Lett ; 128(20): 208005, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657887

ABSTRACT

A bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space, which is the part of its configuration space after discarding rigid motions. We show that the free-energy landscape of a mechanism at low temperatures is dominated by the neighborhoods of points that correspond to these singularities. We consider two example mechanisms with shape-space singularities and find that they are more likely to be found in configurations near the singularities than others. These findings are expected to help improve the design of nanomechanisms for various applications.


Subject(s)
Hot Temperature , Statistics as Topic
10.
Small ; 18(6): e2105640, 2022 02.
Article in English | MEDLINE | ID: mdl-34866333

ABSTRACT

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Biophysical and cell infection studies are done to determine whether vimentin might bind SARS-CoV-2 and facilitate its uptake. Dynamic light scattering shows that vimentin binds to pseudovirus coated with the SARS-CoV-2 spike protein, and antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. The results are consistent with a model in which extracellular vimentin acts as a co-receptor for SARS-CoV-2 spike protein with a binding affinity less than that of the spike protein with ACE2. Extracellular vimentin may thus serve as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry, and vimentin-targeting agents may yield new therapeutic strategies for preventing and slowing SARS-CoV-2 infection.


Subject(s)
Protein Binding , SARS-CoV-2 , Vimentin , Antibodies/pharmacology , COVID-19 , Humans , Spike Glycoprotein, Coronavirus , Vimentin/antagonists & inhibitors , Vimentin/metabolism
11.
Phys Rev Lett ; 126(15): 158101, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929233

ABSTRACT

The cell nucleus houses the chromosomes, which are linked to a soft shell of lamin protein filaments. Experiments indicate that correlated chromosome dynamics and nuclear shape fluctuations arise from motor activity. To identify the physical mechanisms, we develop a model of an active, cross-linked Rouse chain bound to a polymeric shell. System-sized correlated motions occur but require both motor activity and cross-links. Contractile motors, in particular, enhance chromosome dynamics by driving anomalous density fluctuations. Nuclear shape fluctuations depend on motor strength, cross-linking, and chromosome-lamina binding. Therefore, complex chromosome dynamics and nuclear shape emerge from a minimal, active chromosome-lamina system.


Subject(s)
Chromatin/chemistry , Models, Chemical , Molecular Motor Proteins/chemistry , Cell Nucleus/chemistry , Cell Nucleus/genetics , Chromatin/genetics , Chromosomes , Humans , Molecular Motor Proteins/genetics
12.
Phys Rev Lett ; 126(8): 088002, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709747

ABSTRACT

We show how rigidity emerges in experiments on sheared two-dimensional frictional granular materials by using generalizations of two methods for identifying rigid structures. Both approaches, the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other and identify similar rigid structures. As the system becomes jammed, at a critical contact number z_{c}=2.4±0.1, a rigid backbone interspersed with floppy, particle-filled holes of a broad range of sizes emerges, creating a spongelike morphology. While the pressure within rigid structures always exceeds the pressure outside the rigid structures, they are not identified with the force chains of shear jamming. These findings highlight the need to focus on mechanical stability arising through arch structures and hinges at the mesoscale.

13.
Biophys J ; 120(9): 1535-1536, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33740439
14.
bioRxiv ; 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33442680

ABSTRACT

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.

15.
New J Phys ; 232021 Sep.
Article in English | MEDLINE | ID: mdl-35530563

ABSTRACT

The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.

16.
Neuropathol Appl Neurobiol ; 46(6): 588-601, 2020 10.
Article in English | MEDLINE | ID: mdl-32267004

ABSTRACT

AIMS: Congenital myasthenic syndromes (CMS) are characterized by muscle weakness, ptosis and episodic apnoea. Mutations affect integral protein components of the neuromuscular junction (NMJ). Here we searched for the genetic basis of CMS in female monozygotic twins. METHODS: We employed whole-exome sequencing for mutation detection and Sanger sequencing for segregation analysis. Immunohistology was done with antibodies against CHD8, rapsyn, ß-catenin (ßCAT) and golgin on fi-bro-blasts, human and mouse muscle. We recorded superresolution images of the NMJ using 3D-structured illumination microscopy. RESULTS: We discovered a spontaneous missense mutation in CHD8 [chr14:g.21,884,051G>A, GRCh37.p11 | c.1732C>T, NM_00117062 | p.(R578C)], the gene encoding chromodomain helicase DNA-binding protein 8. This is the first missense mutation affecting Duplin, the short 110 kDa isoform of CHD8. It is known that CHD8/Duplin negatively regulates ßCAT signalling in the WNT pathway and plays a role in chromatin remodelling. Inactivating CHD8 mutations are associated with autism spectrum disorder and intellectual disability in combination with facial dysmorphism, overgrowth and macrocephalus. No muscle-specific phenotype has been reported to date. Co-immunostaining with rapsyn on human and mouse muscle revealed a strong presence of CHD8 at the NMJ being located towards the sarcoplasmic side of the rapsyn cluster, where it co-localizes with ßCAT. CONCLUSION: We hypothesize CHD8 to have a role in the maintenance of the structural integrity and function of the NMJ. Both patients benefited from treatment with 3,4-diaminopyridine, a reversible blocker of voltage-gated potassium channels at the nerve terminal that prolongs the action potential and increases acetylcholine release.


Subject(s)
DNA-Binding Proteins/genetics , Mutation, Missense/genetics , Myasthenic Syndromes, Congenital/genetics , Transcription Factors/genetics , Adolescent , Female , Humans , Immunohistochemistry , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myasthenic Syndromes, Congenital/pathology , Neuromuscular Junction/pathology , Twins, Monozygotic , Exome Sequencing
17.
Soft Matter ; 16(18): 4389-4406, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32249282

ABSTRACT

Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well with the experimental cell compression stiffening finding until approximately 35% compressive strain after which bulk fiber network effects may contribute. We also find for the fiber network with area-conserving loops model that the stress-strain curves are sensitive to the packing fraction and size distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced with beads as well as discuss implications for single cell compression stiffening at the tissue scale.


Subject(s)
Fibrin/metabolism , Fibroblasts , Models, Theoretical , Rheology , Actomyosin/metabolism , Animals , Mice , Microscopy, Atomic Force , Polymers
18.
Soft Matter ; 16(13): 3325-3337, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32196025

ABSTRACT

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.


Subject(s)
Cadherins/genetics , Cell Adhesion/drug effects , Keratinocytes/drug effects , Cadherins/chemistry , Cell Shape/drug effects , Cell Size/drug effects , Humans , Surface Properties
19.
Phys Rev E ; 99(5-1): 052413, 2019 May.
Article in English | MEDLINE | ID: mdl-31212528

ABSTRACT

Compression stiffening, or an increase in shear modulus with increasing compressive strain, has been observed in recent rheometry experiments on brain, liver, and fat tissues. Here we extend the known types of biomaterials exhibiting this phenomenon to include agarose gel and fruit flesh. The data reveal a linear relationship between shear storage modulus and uniaxial prestress, even up to 40% strain in some cases. We focus on this less-familiar linear relationship to show that two different results from classic elasticity theory can account for the phenomenon of linear compression stiffening. One result is due to Barron and Klein, extended here to the relevant geometry and prestresses; the other is due to Birch. For incompressible materials, there are no adjustable parameters in either theory. Which one applies to a given situation is a matter of reference state, suggesting that the reference state is determined by the tendency of the material to develop, or not develop, axial stress (in excess of the applied prestress) when subjected to torsion at constant axial strain. Our experiments and analysis also strengthen the notion that seemingly distinct animal and plant tissues can have mechanically similar behavior at the quantitative level under certain conditions.


Subject(s)
Compressive Strength , Elasticity , Models, Biological , Biomechanical Phenomena , Fruit , Mangifera
20.
Elife ; 82019 04 16.
Article in English | MEDLINE | ID: mdl-30990415

ABSTRACT

Models based in differential expansion of elastic material, axonal constraints, directed growth, or multi-phasic combinations have been proposed to explain brain folding. However, the cellular and physical processes present during folding have not been defined. We used the murine cerebellum to challenge folding models with in vivo data. We show that at folding initiation differential expansion is created by the outer layer of proliferating progenitors expanding faster than the core. However, the stiffness differential, compressive forces, and emergent thickness variations required by elastic material models are not present. We find that folding occurs without an obvious cellular pre-pattern, that the outer layer expansion is uniform and fluid-like, and that the cerebellum is under radial and circumferential constraints. Lastly, we find that a multi-phase model incorporating differential expansion of a fluid outer layer and radial and circumferential constraints approximates the in vivo shape evolution observed during initiation of cerebellar folding.


Subject(s)
Cerebellum/anatomy & histology , Cerebellum/growth & development , Organogenesis , Animals , Biophysical Phenomena , Mice , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...