Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38253398

ABSTRACT

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Subject(s)
Biological Products , Depsipeptides , Mice , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Depsipeptides/metabolism , Depsipeptides/therapeutic use , Death, Sudden, Cardiac/etiology , Myocytes, Cardiac/metabolism , Calcium/metabolism
2.
ACS Chem Biol ; 18(10): 2290-2299, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37769131

ABSTRACT

Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.


Subject(s)
Depsipeptides , Ryanodine Receptor Calcium Release Channel , Mice , Swine , Humans , Animals , Ryanodine/chemistry , Ryanodine/metabolism , Ryanodine/therapeutic use , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Depsipeptides/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism
3.
bioRxiv ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461611

ABSTRACT

Ca 2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca 2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent- (+)-verticilide ( ent -1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product ( nat -(-)-verticilide). Here, we examined its 18-membered ring-size oligomer ( ent -verticilide B1; " ent -B1") in single RyR2 channel assays, [ 3 H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent -B1 inhibited RyR2 single-channels and [ 3 H]ryanodine binding with low micromolar potency, and RyR2-mediated spontaneous Ca 2+ release in Casq2-/- cardiomyocytes with sub-micromolar potency. ent -B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent -B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 min and half-life of 45 min after intraperitoneal administration of 3 mg/kg in mice. Both 3 mg/kg and 30 mg/kg ent -B1 significantly reduced catecholamine-induced ventricular arrhythmia in Casq2-/- mice. Hence, we have identified a novel chemical entity - ent -B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. Significance statement: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.

4.
J Biol Chem ; 298(1): 101412, 2022 01.
Article in English | MEDLINE | ID: mdl-34793835

ABSTRACT

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Subject(s)
Biosensing Techniques , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Mice , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/analysis , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...