Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Physiol Funct Imaging ; 42(2): 127-138, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34979052

ABSTRACT

Women exhibit an attenuated exercise pressor reflex (EPR) when compared to men. The influence of sex-specific mechanisms related to the EPR and performance fatigability remain to be fully elucidated. The purpose was to determine the impact of oxygenation and metabolic efficiency on sex-specific performance fatigability and increases in mean arterial pressure (MAP) resulting from a fatiguing isometric handgrip (IHG). Twenty-four adults volunteered to perform an IHG at 25% at maximal voluntary isometric contractions (MVICs). Pre- and posttest MVICs were conducted to quantify performance fatigability. MAP was collected at 3 timepoints. A near-infrared spectroscopy device was attached to the forearm to derive the following signals: oxy[haem], deoxy[haem], total[haem], and diff[haem]. These values were normalized and examined across time in 5% segments of time-to-task-failure. Metabolic efficiency was defined as the ratio force:deoxy[haem]. During the IHG, there was a decline in oxy[haem] for the men (b = -0.075), whereas the women demonstrated an increase (b = 0.117). For the men, the diff[haem] tracked the mean oxy[haem] response, but there was no change for the women. The men exhibited greater declines in metabolic efficiency, yet there were no sex differences in PF (46.6 ± 9.7% vs. 45.5 ± 14.2%). For relative MAP, the men (24.5 ± 15.1%) exhibited a greater (p = .03) increase than the women (11.0 ± 17.6%). These results indicated the EPR was more prominent for the men, perhaps due to differences in mechanical stimuli and a lack of ability to maintain metabolic efficiency. However, these physiological differences did not induce a sex difference in performance fatigability.


Subject(s)
Arterial Pressure , Hand Strength , Adult , Female , Humans , Isometric Contraction , Male , Muscle Fatigue , Muscle, Skeletal
2.
Sports (Basel) ; 8(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075225

ABSTRACT

(-)-Epicatechin is a polyphenol previously shown to enhance vascular health. The purposes of the current studies were to determine the effect of acute (-)-epicatechin supplementation on local vasodilation in conjunction with resistance exercise (study 1) and on high-intensity exercise performance (study 2). For study 1, 11 men participated in two resistance exercise sessions, where they performed three sets of barbell curls while consuming 200 mg of 98% pure (-)-epicatechin or placebo. Measurements of total serum nitrate/nitrite and brachial artery diameter were acquired at baseline (pre-supplement), 90 min after supplement consumption (post-supplement), immediately post-exercise (post-exercise), and 30 min post-exercise (30 min post-exercise). For serum nitric oxide metabolites, no significant interaction between supplement and time nor significant main effect of time was observed (p = 0.38 and p = 0.20; respectively). For brachial artery diameter, no significant interaction between supplement and time was observed (p = 0.24). A significant main effect of time was observed for brachial artery diameter (p < 0.01) with post-exercise brachial artery diameter significantly greater diameter than all other time points (all p < 0.01). For study 2, six women and five men completed the 15.5 CrossFit® Open Workout three times. A familiarization session was performed first where the workout was performed without the consumption of a supplement. In a randomized, balanced fashion, 100 mg of 98% pure (-)-epicatechin or cellulose (placebo) was consumed two times per day for two days before testing sessions two and three. On the day of testing sessions two and three, 60 to 90 min before completing the workout, 200 mg of the assigned supplement was ingested with water. No significant difference was observed for time to complete the workout between testing sessions (p = 0.49). In conclusion, under the conditions of the current studies, acute (-)-epicatechin supplementation did not augment vasodilation in combination with resistance exercise, nor did it increase exercise performance in humans.

3.
J Diet Suppl ; 17(2): 211-226, 2020.
Article in English | MEDLINE | ID: mdl-30285503

ABSTRACT

Multi-ingredient preworkout supplements (MIPS) are marketed as a means to increase exercise performance. The purpose of this study was to determine the effect of a single serving of Bang Pre-Workout Master Blaster (BMB) on upper- and lower-body power output and local muscular endurance. Ten resistance-trained males participated in two exercise testing sessions consisting of the vertical jump (VJ), seated medicine ball throw (SMBT), and local muscular endurance tests for the bench press (BP) and leg extension (LE) exercises at 70% of one-repetition maximum. Participants consumed placebo (PLA) or BMB 30 minutes prior to each exercise session. No difference between trials was observed for SMBT distance or BP repetitions. Vertical jump (p = .006) and LE repetitions (p = .014) were greater for the BMB trial compared with placebo. A significant interaction between trial and time was observed for insulin-like growth factor-1 (IGF-1; p = .044). Serum IGF-1 was significantly increased at both 30 PS (p = .004) and 30PX (p = .038) compared with BL for the BMB trial only. In conclusion, acute ingestion of BMB increased lower-body power and endurance as measured by the VJ and LE repetition tests, respectively, without altering hemodynamics. Furthermore, serum IGF-1 increased in response to acute exercise with BMB supplementation, but not with PLA. No differences in human growth hormone (HGH) or serum cortisol responses were observed between trials.


Subject(s)
Dietary Supplements , Exercise Test , Physical Endurance/drug effects , Physical Functional Performance , Sports Nutritional Physiological Phenomena/drug effects , Administration, Oral , Cross-Over Studies , Double-Blind Method , Human Growth Hormone/blood , Humans , Hydrocortisone/blood , Insulin-Like Growth Factor I/metabolism , Male , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Young Adult
4.
J Int Soc Sports Nutr ; 16(1): 54, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31744521

ABSTRACT

BACKGROUND: The aim of the current study was to determine if 4 weeks of consumption of Bang® Pre-Workout Master Blaster® (BMB; Vital Pharmaceuticals Inc., Weston, FL) combined with resistance training resulted in greater increases in muscle mass and maximal strength compared with resistance training combined with placebo (PLA). Additionally, we aimed to determine if BMB ingestion combined with resistance training preferentially altered resting skeletal muscle expression of microRNAs (miRs) or resting serum insulin-like growth factor (IGF-1). METHODS: Sixteen recreationally-active men completed the study. The study employed a block-randomized, double-blind, placebo-controlled, parallel design. Participants completed two testing sessions separated by 4 weeks of resistance exercise combined with daily supplementation of BMB or PLA. At each testing session, hemodynamics, body composition, and muscle and blood samples were obtained followed by strength assessments of the lower- and upper-body via measurement of squat and bench press one-repetition maximum (1-RM), respectively. A separate general linear model was utilized for analysis of each variable to determine the effect of each supplement (between-factor) over time (within-factor) using an a priori probability level of ≤0.05. RESULTS: No significant effects were observed for dietary intake, hemodynamics, fat mass, body fat percentage, or serum IGF-1. A greater increase in total body mass (3.19 kg, 95% CI, 1.98 kg, 4.40 kg vs. 0.44 kg, 95% CI, - 0.50 kg, 1.39 kg) and lean body mass (3.15 kg, 95% CI, 1.80 kg, 4.49 kg vs. 0.89 kg, 95% CI, - 0.14 kg, 1.93 kg) was observed for the BMB group compared with PLA (p <  0.01). A significant increase over time was observed for miR-23a (p = 0.02) and miR-23b (p = 0.05) expression. A greater increase in squat 1-RM was observed for the BMB group (23.86 kg, 95% CI, 16.75 kg, 30.97 kg) compared with the PLA group (14.20 kg, 95% CI, 7.04 kg, 21.37 kg, p = 0.04). CONCLUSIONS: BMB supplementation combined with resistance exercise training for 4 weeks resulted in superior adaptations in maximal strength and LBM compared with resistance training with a placebo. No adverse resting hemodynamic or clinical blood safety markers were observed as a result of BMB supplementation. The superior outcomes associated with BMB supplementation could not be explained by resting serum IGF-1 or the skeletal muscle miRs measured, although resting miR-23a and miR-23b expression both increased as a result of resistance training.


Subject(s)
Body Composition , Dietary Supplements , MicroRNAs/analysis , Resistance Training , Sports Nutritional Physiological Phenomena , Adult , Diet , Double-Blind Method , Hemodynamics , Humans , Insulin-Like Growth Factor I/analysis , Male , Muscle Strength , Muscle, Skeletal/metabolism , Young Adult
5.
Sports (Basel) ; 7(10)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31574918

ABSTRACT

The purpose of this study was to examine differences between a free-weight squat (FWS) and machine squat (MS) during an initial resistance training phase for augmentation of performance tests in recreationally active women. Twenty-seven women (22.7 ± 3.5 years) were block-randomized to three groups: FWS, MS, or control (CON) and completed pre- and post-testing sessions consisting of the squat one-repetition maximum (1-RM), vertical jump, pro-agility test, zig-zag change-of-direction (COD) test, and 30-meter sprint. Participants trained two sessions per week for six weeks by performing jumping, sprinting, and COD drills followed by FWS, MS, or no squats (CON). Peak jump power increased for CON (p = 0.03) and MS (p < 0.01) groups. Change in peak jump power was greater for the MS group compared with the FWS group (p = 0.05). Average jump power increased for the MS group (p < 0.01). Change in average jump power was greater for the MS group compared with the CON group (p = 0.04). Vertical jump height, pro-agility, 30-meter sprint, and zig-zag COD tests improved over time (p < 0.01), with no difference between groups (p > 0.05). Machine squat training maximized jumping power compared with FWS training and CON. Both resistance training groups and the CON group improved equally in the pro-agility, 30-meter sprint, and zig-zag COD tests. Machine squat training may provide performance-enhancing benefits of equal or superior value to those obtained with free-weight squat training in recreationally active women during an initial training mesocycle. These findings also stress the importance of task-specific training in this population of untrained women, as the control group improved in terms of performance to the same degree as both resistance training groups.

6.
J Funct Morphol Kinesiol ; 4(2)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-33467334

ABSTRACT

Ankle sprain is the most commonly diagnosed injury experienced by ballet dancers with few studies investigating preventive support measures such as Kinesio taping. The need exists to examine the mechanical support characteristics of Kinesio taping and effect of application on ankle motion and performance. This may be important to understanding the mechanical mechanisms attributed to Kinesio ankle taping and justify its use in the prevention and treatment of jump landing injuries in ballet dancers. This study compared Kinesio taping with and without tension and no tape (control) on active and passive measures of ankle complex motion in healthy ballet dancers. A secondary objective was to examine the effect of Kinesio taping on balance using time to stabilization. Participants performed three ballet jumps with single-leg landings on a force plate across three ankle support conditions consisting of Kinesio taping, sham-Kinesio taping, and no tape. Sagittal and frontal plane motion and load-displacement of the ankle complex for each support condition were obtained using an ankle arthrometer. Kinesio taping with tension significantly restricted inversion-eversion rotation and increased inversion stiffness of the ankle complex (p < 0.05). No significant differences were found among the three ankle support conditions for jump landing time to stabilization (p > 0.05). Arthrometric results indicate Kinesio taping significantly restricted ankle complex motion in the frontal plane that is associated with lateral ankle sprain. Objective information on the nature of Kinesio taping support can assist sports medicine practitioners when recommending ankle support to athletes.

7.
Front Nutr ; 5: 132, 2018.
Article in English | MEDLINE | ID: mdl-30622947

ABSTRACT

The purpose of the study was to determine if cycling exercise combined with (-)-epicatechin supplementation was more effective at increasing training adaptations than cycling combined with a placebo. Blood and muscle samples were obtained at rest before and after training to determine the effects of (-)-epicatechin supplementation on total serum antioxidant capacity, skeletal muscle mitochondrial protein content, and skeletal muscle myostatin gene expression. Participants (n = 20) completed two testing sessions separated by 4 weeks of cycle training, with supplementation of 100 mg (200 mg total daily) of (-)-epicatechin or a placebo, twice daily. Data were analyzed using a two-way mixed model ANOVA for each variable and the alpha level was set at p ≤ 0.05. A significant increase was observed for time for relative peak anaerobic power (p < 0.01), relative anaerobic capacity (p < 0.01), and fatigue index (p < 0.01). A significant increase was observed for time for absolute peak VO2 (p < 0.01) and peak power output obtained during the peak VO2 test (p < 0.01). A significant interaction between group and time for relative peak VO2 was observed (p = 0.04). Relative peak VO2 significantly increased over time in the placebo group (p < 0.01), but not in the (-)-epicatechin group (p = 0.21). A significant increase was observed for time for total serum antioxidant capacity (p = 0.01). No interaction or main effect of time was observed for myostatin (p > 0.05). Likewise, no interaction or main effect of time was observed for cytochrome C or citrate synthase (p > 0.05). A significant interaction effect was observed for succinate dehydrogenase (SDH; p = 0.02). SDH content increased significantly for the placebo group (p = 0.03, partial η2 = 0.59), but not for the (-)-epicatechin group (p = 0.81). Further, whereas no difference existed between the groups for SDH at baseline (p = 0.23), SDH content was significantly greater in the placebo group at the post time point (p = 0.01). Results indicate that (-)-epicatechin supplementation does not affect myostatin gene expression or anaerobic training adaptations but inhibits aerobic and mitochondrial SDH adaptations to cycle exercise training.

8.
Appl Physiol Nutr Metab ; 41(8): 856-63, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27467217

ABSTRACT

The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/metabolism , Myostatin/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Endurance , Resistance Training , Adolescent , Adult , Body Mass Index , Cross-Over Studies , Gene Expression Regulation , Humans , Insulin-Like Growth Factor I/genetics , Male , Myostatin/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Young Adult
9.
J Am Coll Nutr ; 35(7): 627-638, 2016.
Article in English | MEDLINE | ID: mdl-27331824

ABSTRACT

OBJECTIVE: Ursolic acid administration following resistance exercise increases mammalian target of rapamycin complex 1 (mTORC1) activity and skeletal muscle IGF-1 concentration in murines in a manner similar to l-leucine yet remains unexamined in humans. This study examined serum and skeletal muscle insulin-like growth factor-1 (IGF-1) and Akt/mTORC1 signaling activity following ingestion of either ursolic acid or l-leucine immediately after resistance exercise. METHODS: Nine resistance-trained men performed 3 lower-body resistance exercise sessions involving 4 sets of 8-10 repetitions at 75%-80% one repetition maximum (1-RM) on the angled leg press and knee extension exercises. Immediately following each session, participants orally ingested 3 g cellulose placebo (PLC), l-leucine (LEU), or ursolic acid (UA). Blood samples were obtained pre-exercise and at 0.5, 2, and 6 hours postexercise. Muscle biopsies were obtained pre-exercise and at 2 and 6 hours postexercise. RESULTS: Plasma leucine increased in LEU at 2 hours postexercise compared to PLC (p = 0.04). Plasma ursolic acid increased in UA at 2 h and 6 hours postexercise compared to PLC and LEU (p < 0.003). No significant differences were observed for serum insulin (p = 0.98) and IGF-1 (p = 0.99) or skeletal muscle IGF-1 receptor (IGF-1R; p = 0.84), Akt (p = 0.55), mTOR (p = 0.09), and p70S6K (p = 0.98). Skeletal muscle IGF-1 was significantly increased in LEU at 2 hours postexercise (p = 0.03) and 6 hours postexercise (p = 0.04) compared to PLC and UA. CONCLUSION: Three grams of l-leucine and ursolic acid had no effect on Akt/mTORC1 signaling or serum insulin or IGF-1; however, l-leucine increased skeletal muscle IGF-1 concentration in resistance-trained men.


Subject(s)
Insulin-Like Growth Factor I/analysis , Leucine/administration & dosage , Multiprotein Complexes/metabolism , Muscle, Skeletal/chemistry , Resistance Training , TOR Serine-Threonine Kinases/metabolism , Triterpenes/administration & dosage , Adult , Cross-Over Studies , Diet , Dietary Supplements , Double-Blind Method , Humans , Insulin/blood , Leucine/blood , Male , Mechanistic Target of Rapamycin Complex 1 , Muscle, Skeletal/drug effects , Signal Transduction/drug effects , Triterpenes/blood , Young Adult , Ursolic Acid
10.
J Strength Cond Res ; 29(8): 2326-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25734783

ABSTRACT

The purpose of this study was to determine if resistance exercise intensity, in the context of equal volume load, differentially affected myosin heavy chain (MHC) isoform messenger RNA (mRNA) expression in resistance-trained men. In a crossover, uniform-balanced design, 10 male participants (23.7 ± 2.8 years, 178.8 ± 5.9 cm, 85.9 ± 9.2 kg) completed 2 lower-body resistance exercise sessions of different intensities with equal volume load. For the higher-intensity exercise session, participants performed 5 sets of 6 repetitions at 80% of 1 repetition maximum (1RM). For the lower-intensity exercise session, participants performed 3 sets of 16 repetitions at 50% of 1RM. Muscle samples from the vastus lateralis were acquired before exercise (PRE), 45 minutes postexercise (45MINPE), 3 hours postexercise (3HRPE), 24 hours postexercise (24HRPE), and 48 hours postexercise (48HRPE). Statistical analyses of mRNA expression were performed using separate 2 × 5 two-way repeated-measures analyses of variance for each criterion variable (p ≤ 0.05). There were no statistically significant interactions between intensity and time. Likewise, there were no significant differences between exercise intensity in MHC expression. Expression of mRNA for all MHC isoforms decreased at all postexercise time points, except 3HRPE (p = 0.051), compared with PRE following both exercise bouts (p ≤ 0.05). The results of this study found no difference in mRNA expression of MHC isoforms as a function of resistance exercise intensity. In addition, in contrast to results found in previous studies of untrained men, MHC mRNA expression seems to decrease in response to acute resistance exercise in previously resistance-trained men.


Subject(s)
Myosin Heavy Chains/genetics , Physical Exertion/physiology , Quadriceps Muscle/physiology , RNA, Messenger/metabolism , Resistance Training/methods , Adult , Cross-Over Studies , Humans , Male , Protein Isoforms/genetics , Young Adult
11.
Nutr Res ; 33(12): 1034-42, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24267043

ABSTRACT

Capsaicin and evodiamine are 2 thermogenic agents recognized for their ability to stimulate the sympathetic nervous system. We hypothesized that both capsaicin and evodiamine would be effective at increasing thermogenesis and lipid oxidation during rest and exercise. In a randomized, cross-over design, 11 men ingested 500 mg of cayenne pepper (1.25 mg capsaicin), 500 mg evodiamine, or placebo at rest following 30 minutes of energy expenditure assessment using open-circuit spirometry. Energy expenditure was assessed again prior to commencing approximately 30 minutes of treadmill exercise at 65% peak oxygen consumption. Energy expenditure was assessed for another 30 minutes of the post-exercise period. Heart rate, blood pressure, core temperature, and venous blood samples were obtained 30 minutes before supplement ingestion, 1 hour after supplement ingestion, immediately post-exercise, and 45 minutes post-exercise. Serum markers of lipid oxidation (glycerol, free fatty acids, glucose, epinephrine, and norepinephrine) were determined spectrophotometrically with enzyme-linked immunosorbent assay. Two-way analyses of variance with repeated measures were performed for each dependent variable (P ≤ .05) with Supplement and Test as main effects. Statistical analyses revealed significant main effects for Test for hemodynamics, energy expenditure, serum catecholamines, and markers of fat oxidation immediately post-exercise (P < .05). No significant interactions between Supplement and Test were noted for any criterion variable (P > .05). These results suggest that acute ingestion of 500 mg of cayenne (1.25 mg capsaicin) or evodiamine is not effective at inducing thermogenesis and increasing fat oxidation at rest or during exercise in men.


Subject(s)
Capsaicin/pharmacology , Energy Metabolism/drug effects , Exercise/physiology , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Quinazolines/pharmacology , Rest/physiology , Adipose Tissue/metabolism , Adolescent , Adult , Capsicum/chemistry , Cross-Over Studies , Evodia/chemistry , Humans , Male , Oxidation-Reduction , Oxygen Consumption , Physical Exertion/physiology , Thermogenesis/drug effects , Young Adult
12.
J Nutr Metab ; 2011: 237932, 2011.
Article in English | MEDLINE | ID: mdl-21822485

ABSTRACT

The estimated prevalence of obesity in the USA is 72.5 million adults with costs attributed to obesity more than 147 billion dollars per year. Though caloric restriction has been used extensively in weight control studies, short-term success has been difficult to achieve, with long-term success of weight control being even more elusive. Therefore, novel approaches are needed to control the rates of obesity that are occurring globally. The purpose of this paper is to provide a synopsis of how exercise, sleep, psychological stress, and meal frequency and composition affect levels of ghrelin, cortisol, insulin GLP-1, and leptin and weight control. We will provide information regarding how hormones respond to various lifestyle factors which may affect appetite control, hunger, satiety, and weight control.

13.
J Athl Train ; 46(2): 126-32, 2011.
Article in English | MEDLINE | ID: mdl-21391797

ABSTRACT

CONTEXT: Valid and reliable measurements of ankle-complex motion have been reported using the Hollis Ankle Arthrometer. No published normative data of ankle-complex motion obtained from ankle arthrometry are available for use as a reference for clinical decision making. OBJECTIVE: To describe the distribution variables of ankle-complex motion in uninjured ankles and to establish normative reference values for use in research and to assist in clinical decision making. DESIGN: Descriptive laboratory study. SETTING: University research laboratory. PATIENTS OR OTHER PARTICIPANTS: Both ankles of 50 men and 50 women (age = 21.78 ± 2.0 years [range, 19-25 years]) were tested. INTERVENTION(S): Each ankle underwent anteroposterior (AP) and inversion-eversion (I-E) loading using an ankle arthrometer. MAIN OUTCOME MEASURE(S): Recorded anterior, posterior, and total AP displacement (millimeters) at 125 N and inversion, eversion, and total I-E rotation (degrees) at 4 Nm. RESULTS: Women had greater ankle-complex motion for all variables except for posterior displacement. Total AP displacement of the ankle complex was 18.79 ± 4.1 mm for women and 16.70 ± 4.8 mm for men (U = 3742.5, P < .01). Total I-E rotation of the ankle complex was 42.10 degrees ± 9.0 degrees for women and 34.13 degrees ± 10.1 degrees for men (U = 2807, P < .001). All variables were normally distributed except for anterior displacement, inversion rotation, eversion rotation, and total I-E rotation in the women's ankles and eversion rotation in the men's ankles; these variables were skewed positively. CONCLUSIONS: Our study increases the available database on ankle-complex motion, and it forms the basis of norm-referenced clinical comparisons and the basis on which quantitative definitions of ankle pathologic conditions can be developed.


Subject(s)
Ankle/physiology , Arthrometry, Articular/methods , Range of Motion, Articular , Adult , Ankle/anatomy & histology , Ankle Joint , Biomechanical Phenomena , Female , Humans , Joint Instability , Male , Physical Examination , Reference Values , Rotation , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...