Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(15): e202104104, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35050538

ABSTRACT

The formation of peptides from amino acids is one of the processes associated with life. Because of the dominant role of translation in extant biology, peptide-forming processes that are RNA induced are of particular interest. We have previously reported the formation of phosphoramidate-linked peptido RNAs as the products of spontaneous condensation reactions between ribonucleotides and free amino acids in aqueous solution. We now asked whether four-helix bundle (4HB) DNA or RNA folding motifs with a single- or double-nucleotide gap next to a 5'-phosphate can act as reaction sites for phosphoramidate formation. For glycine, this was found to be the case, whereas phenylalanine and tryptophan showed accelerated formation of peptides without a covalent link to the nucleic acid. Free peptides with up to 11 tryptophan or phenylalanine residues were found in precipitates forming in the presence of gap-containing DNA or RNA 4HBs. Control experiments using motifs with just a nick or primer alone did not have the same effect. Because folded structures with a gap in a double helix are likely products of hybridization of strands formed in statistically controlled oligomerization reactions, our results are interesting in the context of prebiotic scenarios. Independent of a putative role in evolution, our findings suggest that for some aromatic amino acids an RNA-induced pathway for oligomerization exists that does not have a discernable link to translation.


Subject(s)
Amino Acids, Aromatic , RNA , Amino Acids/chemistry , DNA , Peptides/chemistry , RNA/metabolism
2.
Nanoscale ; 11(31): 14921-14928, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31360975

ABSTRACT

Designed DNA nanostructures can be generated in a wide range of sizes and shapes and have the potential to become exciting tools in material sciences, catalysis and medicine. However, DNA nanostructures are thermally labile assemblies of delicate biomacromolecules, and the lability hampers the use in many applications. Disulfide crosslinking is nature's successful approach to stabilize folded proteins against denaturation. It is therefore interesting to ask whether similar approaches can be used to stabilize DNA nanostructures. Here we report the synthesis of two 2'-deoxynucleoside phosphoramidites and two nucleosides linked to controlled pore glass that can be used to prepare oligodeoxynucleotides with protected thiol groups via automated DNA synthesis. Strands with one, two, three or four thiol-bearing nucleotides were prepared. One nicked duplex and three different nanostructures were assembled, the protected thiols were liberated under non-denaturing conditions, and disulfide crosslinking was induced with oxygen. Up to 19 crosslinks were thus placed in folded DNA structures up to 1456 nucleotides in size. The crosslinked structures had increased thermal stability, with UV-melting points 9-50 °C above that of the control structure. Disulfides were converted back to free thiols under reducing conditions. The redox-dependent increase in stability makes crosslinked DNA nanostructures attractive for the construction of responsive materials and biomedical applications.


Subject(s)
DNA/chemistry , Disulfides/chemistry , Nanostructures/chemistry , DNA/chemical synthesis , Nucleic Acid Denaturation , Phase Transition , Sulfhydryl Compounds/chemistry , Temperature , Ultraviolet Rays
3.
Nanoscale ; 9(21): 7047-7054, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28327725

ABSTRACT

Designed DNA nanostructures of impressive size have been described, but designed structures of the size of protein enzymes that bind organic ligands with high specificity are rare. Here we report a four-helix motif consisting of three synthetic strands with 65 base pairs and 165 nucleotides in total that folds well. Furthermore, we show that in the interior of this small folded DNA nanostructure, cavities can be set up that bind pyrimidine nucleotides with micromolar affinity. Base-specific binding for both thymidine and cytidine derivatives is demonstrated. The binding affinity depends on the position in the structure, as expected for recognition beyond simple base pairing. The folding motif reported here can help to expand DNA nanotechnology into the realm of selective molecular recognition that is currently dominated by protein-based enzymes and receptors.


Subject(s)
DNA/ultrastructure , Nanostructures , Nucleic Acid Conformation , Pyrimidine Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...