Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 981564, 2022.
Article in English | MEDLINE | ID: mdl-36157463

ABSTRACT

Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17ß-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.


Subject(s)
Lymnaea , Receptors, Progesterone , Animals , Estradiol , Gonadotropin-Releasing Hormone/metabolism , Humans , Lymnaea/metabolism , Progesterone/metabolism , Receptors, Progesterone/metabolism , Reproduction/physiology , Snails/metabolism , Steroids , Testosterone/metabolism , Vertebrates/metabolism , Water/metabolism
2.
Front Endocrinol (Lausanne) ; 12: 794623, 2021.
Article in English | MEDLINE | ID: mdl-34975764

ABSTRACT

Previous toxicokinetic studies have shown that mussels (Mytilus spp.) can readily absorb the three main mammalian sex steroids, estradiol (E2), testosterone (T) and progesterone (P) from water. They also have a strong ability to store E2 and the 5α-reduced metabolites of T and P in the form of fatty acid esters. These esters were shown to have half-lives that were measured in weeks (i.e. they were not subject to fast depuration). The present study looked at the toxicokinetic profile of two other common steroids that are found in water, the potent synthetic oestrogen, (ethinyl-estradiol) (EE2; one of the two components of 'the pill'), and cortisol, a natural stress steroid in vertebrates. In the first three hours of uptake, tritiated EE2 was found to be taken up at a similar rate to tritiated E2. However, the levels in the water plateaued sooner than E2. The ability of the animals to both esterify and sulphate EE2 was found to be much lower than E2, but nevertheless did still take place. After 24 h of exposure, the majority of radiolabelled EE2 in the animals was present in the form of free steroid, contrary to E2, which was esterified. This metabolism was reflected in a much lower half-life (of only 15 h for EE2 in the mussels as opposed to 8 days for E2 and >10 days for T and P). Intriguingly, hardly any cortisol (in fact none at all in one of the experiments) was absorbed by the mussels. The implications of this finding in both toxicokinetic profiling and evolutionary significance (why cortisol might have evolved as a stress steroid in bony fishes) are discussed.


Subject(s)
Estrogens/metabolism , Ethinyl Estradiol/metabolism , Hydrocortisone/metabolism , Metabolic Clearance Rate/physiology , Water Pollutants, Chemical/metabolism , Water/metabolism , Animals , Estrogens/analysis , Ethinyl Estradiol/analysis , Hydrocortisone/analysis , Mytilus , Water/analysis , Water Pollutants, Chemical/analysis
3.
Rev Environ Contam Toxicol ; 245: 65-127, 2018.
Article in English | MEDLINE | ID: mdl-29119384

ABSTRACT

Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.


Subject(s)
Ecology/trends , Endocrine Disruptors/toxicity , Environmental Exposure/analysis , Trialkyltin Compounds/toxicity , Animals , Endocrine Disruptors/analysis , Endocrine Disruptors/metabolism , Environmental Exposure/adverse effects , Guidelines as Topic , Humans , International Agencies , Risk Assessment , Toxicity Tests , Trialkyltin Compounds/analysis , Trialkyltin Compounds/metabolism
4.
J Steroid Biochem Mol Biol ; 178: 13-21, 2018 04.
Article in English | MEDLINE | ID: mdl-29107179

ABSTRACT

Previous studies have shown that mussels can pick up 17ß-estradiol [E2] and testosterone [T] from water, metabolize them and conjugate them to fatty acids (esterification), leading to their accumulation in tissue. A key requirement for the esterification process is that a steroid must have a 'reactive' hydroxyl group to conjugate to a fatty acid (which in T, and probably E2, is the ß-hydroxyl group on carbon 17). Progesterone (P) lacks any hydroxyl groups and theoretically cannot be esterified and hence should not accumulate in mussels in the same way as E2 or T. However, it is already known that mussels have an enzyme that can achieve 5α-reduction of the A ring of T and P and that there is also another reductase that can transform the 3-oxo group of the 5α-reduced A ring of T into a hydroxyl group. We hypothesized that, although intact P cannot be directly esterified, it might nevertheless be transformed into metabolites that can. To test this hypothesis, we investigated the rate and capacity of uptake, metabolism and potential depuration of tritiated P by the common mussel, Mytilus spp. We found that tritiated P was taken up from water at a similar rate to E2 and T (mean clearance rate 49mL-1 animal-1h-1) and that, as found with the other steroids, the rate of uptake could not be saturated by the addition of non-radioactive steroid (even at 7.6µgL-1). We found that up to 66% of the radioactivity that was taken up was present in the ester fraction, suggesting that hydroxylation of the P must indeed have occurred. We then definitively identified two metabolites in the ester fraction: 5α-pregnane-3ß,20ß-diol and 3ß-hydroxy-5α-pregnan-20-one. These same two steroids were also present in the free steroid fraction. Intact P was not detected in either of the fractions. When undergoing depuration (under semi-static conditions), the radioactivity in the ester fractions remained at the same concentration in the animals for at least 10 days. Our findings suggest that the lack of reactive hydroxyl groups on P does not preclude it from being taken up, metabolized and subsequently stored. Many questions remain, not least of which is why, when P seems to be so rapidly metabolized, two previous studies on mussels have reported concentrations of up to 30ngg-1 wet weight of P in their flesh.


Subject(s)
Mytilus/metabolism , Progesterone/metabolism , Water/chemistry , Animals , Biotransformation , Esterification
5.
Data Brief ; 12: 164-168, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28459089

ABSTRACT

This article provides data in support of the research article entitled "Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp." (T.I. Schwarz, I. Katsiadaki, B.H. Maskrey, A.P. Scott, 2017) [1]. The uptake of tritiated testosterone (T) from water by mussels is presented. The two main radioactive peaks formed from T and present in the fatty acid ester fraction of mussel tissues were shown to have the same elution positions on a thin layer chromatography plate as 17ß-hydroxy-5α-androstan-3-one (DHT) and 5α-androstan-3ß,17ß-diol (3ß,17ß-A5α). Reverse phase high performance liquid chromatography of the non-esterified (80% ethanol) fraction of the mussel tissue extracts also presented radioactive peaks at the elution positions of DHT and 3ß,17ß-A5α. There was no evidence for sulfated T in this fraction. It was shown that aeration led to significant losses of radiolabeled testosterone from the water column.

6.
J Steroid Biochem Mol Biol ; 171: 54-65, 2017 07.
Article in English | MEDLINE | ID: mdl-28245981

ABSTRACT

The presence of the vertebrate steroids, testosterone (T) and 17ß-estradiol in mollusks is often cited as evidence that they are involved in the control of their reproduction. In this paper, we show that a likely source of T in at least one species, the common mussel (Mytilus spp.), is from uptake from water. When mussels were exposed to waterborne tritiated T ([3H]-T) in a closed container, the radioactivity decreased rapidly and exponentially until, by 24h, approximately 35% remained in the water. The rate of uptake of radiolabel could not be saturated by concentrations as high as 16.5µgL-1 (mean measured) of non-radiolabeled T, showing that the animals have a very high capacity for uptake of T. At least 30% of the applied radioactivity could be extracted from the tissues of the animals with organic solvents and most of this (26% of the total applied radioactivity) was in the fatty acid ester fraction. Following alkaline hydrolysis, reverse phase HPLC and TLC, this fraction was shown to consist predominantly of 5α-dihydrotestosterone and 5α-androstane-3ß,17ß-diol, while T was a minor component. These steroids were definitively identified in the fatty acid ester fraction by mass spectrometry. Overall, less than 5% of the [3H]-T applied to the system remained untransformed at the end of exposure. After ten days of depuration there was no reduction in the total amount of radioactivity in the tissues, nor any changes in the ratio of the metabolites in the ester fraction. These findings show that any association between T presence and reproductive status or sex is confounded by their significant capacity for uptake, and that T undergoes extensive metabolism in mussels in vivo and therefore may not be representative of the androgenic burden of the animals. Consequently, measurements of T in mussel tissue offer little utility as an indicator of reproductive status or sex.


Subject(s)
Anabolic Agents/pharmacokinetics , Drug Residues/analysis , Food Contamination , Mytilus edulis/metabolism , Shellfish/analysis , Testosterone/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Anabolic Agents/analysis , Androstane-3,17-diol/analysis , Animals , Biological Transport , Biotransformation , Dihydrotestosterone/analysis , Esterification , Food Handling , Metabolic Clearance Rate , Muscles/metabolism , Osmolar Concentration , Testosterone/analysis , Time Factors , Tritium , Water Pollutants, Chemical/analysis
7.
Integr Environ Assess Manag ; 13(2): 267-279, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28127947

ABSTRACT

A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17ß-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors/analysis , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Consensus Development Conferences as Topic , Ecotoxicology , Endocrine Disruptors/standards , Endocrine Disruptors/toxicity , Environmental Pollutants/standards , Environmental Pollutants/toxicity , Risk Assessment
8.
Integr Environ Assess Manag ; 13(2): 317-330, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28052490

ABSTRACT

For ecotoxicological risk assessment, endocrine disruptors require the establishment of an endocrine mode of action (MoA) with a plausible link to a population-relevant adverse effect. Current ecotoxicity test methods incorporate mostly apical endpoints although some also include mechanistic endpoints, subcellular-through-organ level, which can help establish an endocrine MoA. However, the link between these endpoints and adverse population-level effects is often unclear. The case studies of endocrine-active substances (EAS) (tributyltin, ethinylestradiol, perchlorate, trenbolone, propiconazole, and vinclozolin) evaluated from the Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop® "Ecotoxicological Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" were used to evaluate the population relevance of toxicity endpoints in various taxa according to regulatory endocrine-disruptor frameworks such as the Organisation for Economic Co-operation and Development (OECD) Conceptual Framework for Testing and Assessment of Endocrine Disruptors. A wide variety of potentially endocrine-relevant endpoints were identified for mollusks, fish, amphibians, birds, and mammals, although the strength of the relationship between test endpoints and population-level effects was often uncertain. Furthermore, testing alone is insufficient for assessing potential adaptation and recovery processes in exposed populations. For this purpose, models that link effects observed in laboratory tests to the dynamics of wildlife populations appear to be necessary, and their development requires reliable and robust data. As our understanding of endocrine perturbations and key event relationships improves, adverse population-level effects will be more easily and accurately predicted. Integr Environ Assess Manag 2017;13:317-330. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors/toxicity , Environmental Monitoring , Environmental Pollutants/toxicity , Animals , Ecotoxicology , Endocrine Disruptors/standards , Environmental Pollutants/standards , Humans , International Agencies , Mammals , Risk Assessment
9.
J Steroid Biochem Mol Biol ; 165(Pt B): 407-420, 2017 01.
Article in English | MEDLINE | ID: mdl-27568213

ABSTRACT

Six experiments were carried out to define the optimum conditions for investigating the dynamics of uptake and metabolism of tritiated E2 from water by adult blue mussels, Mytilus spp. Optimum uptake was achieved using 400mL aerated sea water animal-1 and an incubation period of no more than 24h. The pattern of disappearance conformed closest to an inverse hyperbolic curve with the percentage of radiolabel that could be measured in the water reaching an asymptote that was on average 50% of the original. This apparent inability of the animals to absorb all the radiolabel was investigated further. Solvent partition and chromatography revealed that, after 24h, c. 60% of the radiolabel still present in the water was composed of water soluble conjugates, c. 25% was composed of tritiated water and only 15% ran on and around the chromatographic position of E2. The major water soluble constituent was identified by chromatography and mass-spectrometry as 1,3,5(10)-estratriene-3,17ß-diol 3-sulfate (estradiol 3-S). The clearance rate of radiolabel was 46.9±1.8mLanimal-1h-1. This was not significantly affected by the addition of as much as 25µgL-1 cold E2 to the water, demonstrating that mussels have a large capacity for E2 uptake. A new procedure involving solvent partition was developed for separating the free, esterified and sulfated forms of E2 present in the flesh of mussels. This involved extracting the soft tissue with organic solvents and then treating a portion of dried extract with a combination of heptane (dissolved fatty acid esters of E2) and 80% ethanol (dissolved free and sulfated E2). The latter fraction was further partitioned between water (sulfate) and diethyl ether (free steroid). This procedure was much cheaper and less time-consuming than chromatography. Approximately 80% of the radioactivity that was taken up by the animals was present in the form of ester. Moreover, E2 was the only steroid identified after saponification of these esters. Of the remaining radioactivity, c. 10% was in the form of unidentified free steroids and c. 10% was estradiol 3-S. In order to determine how rapidly mussels were able to depurate tritiated E2 and its metabolites, two experiments were carried out. Animals from the first experiment purged up to 63% of radioactivity in 20days under flow-through conditions; whereas animals from the second experiment released only 16% of radioactivity in 10days under semi-static conditions. The ratios of the different forms of E2 did not change substantially during the course of depuration.


Subject(s)
Estradiol/metabolism , Mytilus/metabolism , Animals , Chromatography , Chromatography, High Pressure Liquid , Esters , Estradiol/pharmacokinetics , Estrenes/metabolism , Mass Spectrometry , Organic Chemicals , Scintillation Counting , Seawater/chemistry , Solvents/chemistry , Sulfates/chemistry
10.
Data Brief ; 9: 956-965, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27896302

ABSTRACT

The data presented in this article primarily provide support for the research article entitled "Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17ß from water" (T.I. Schwarz, I. Katsiadaki, B.H. Maskrey, A.P. Scott, 2016) [1]. Data are presented on the ability of mussels to absorb tritiated estradiol (E2) from water. The data indicate that most of the radioactivity remaining in the water is 1,3,5(10)-estratriene-3,17ß-diol 3-sulfate (E2 3-S) and the radioactivity in the mussel tissue is mainly in the form of fatty acid esters. The latter, following saponification, were identified by ultra-high performance liquid chromatography in conjunction with tandem mass spectrometry (UHPLC-MS/MS) as intact E2. Data are included that indicate that the remaining radioactivity in the tissue is composed of E2 3-S and unidentified free metabolites. Experimental data included also relate to a) the efficiency of extraction of radioactivity from tissue, b) the efficiency of separation of free and esterified E2 using solvents and c) possible factors affecting the recovery of radioactivity. Finally, preliminary data are provided on concentrations of immunoreactive E2 in the free and ester fractions of tissue extracts from mussels caged in the field.

11.
PLoS One ; 4(12): e8388, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20027306

ABSTRACT

BACKGROUND: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. METHODOLOGY/PRINCIPAL FINDINGS: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to > or =15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, bla(TEM-1), tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. CONCLUSIONS: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.


Subject(s)
Aeromonas/genetics , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Fishes/microbiology , Genes, Bacterial/genetics , Water Microbiology , Aeromonas/drug effects , Aeromonas/isolation & purification , Animals , Cloning, Molecular , Gene Expression Regulation, Bacterial/drug effects , Integrons/genetics , Microbial Sensitivity Tests , Mutagenesis, Insertional/drug effects , Mutagenesis, Insertional/genetics , Oligonucleotide Array Sequence Analysis , Plasmids/genetics , Polymerase Chain Reaction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...