Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(46): 25440-25449, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955678

ABSTRACT

Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.

2.
Proc Natl Acad Sci U S A ; 120(43): e2303989120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37856546

ABSTRACT

The Periodic Law of Chemistry is one of the great discoveries in cultural history. Elements behaving chemically similar are empirically merged in groups G of a Periodic Table, each element with G valence electrons per neutral atom, and with upper limit G for the oxidation and valence numbers. Here, we report that among the usually mono- or di-valent s-block elements (G = 1 or 2), the heaviest members (87Fr, 88Ra, 119E, and 120E) with atomic numbers Z = 87, 88, 119, 120 form unusual 5- or 6-valent compounds at ambient conditions. Together with well-reported basic changes of valence at the end of the 6d-series, in the whole 7p-series, and for 5g6f-elements, it indicates that at the bottom of common Periodic Tables, the classic Periodic Law is not as straightforward as commonly expected. Specifically, we predict the feasible experimental synthesis of polyvalent [RaL-n] (n = 4, 6) compounds.

3.
J Comput Chem ; 44(3): 190-198, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35420170

ABSTRACT

Actinoid tetroxide molecules AnO4 (An = Ac - Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a "volcano"-type variation: For An = Ac - Np, the OSs are equal to the number of available valence electrons, that is, AcIII , ThIV , PaV , UVI , and NpVII . Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV , AmV , and CmIII , indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.

4.
J Chem Phys ; 157(5): 054301, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35933208

ABSTRACT

Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2)n]+ (n = 1-7), were synthesized in the gas phase. Mass-selected infrared photodissociation spectroscopy and quantum chemical calculations confirm [NUO·(N2)5]+ to be a sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The presence of short N-U bond distances and high stretching modes, with slightly elongated U-O bond distances and lowered stretching modes, is rationalized by attributing them to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through flexible electronic U-5f6d7sp valence shell and the linearly increasing perturbation with increase in the number of equatorial dative N2 ligands has also been explained, highlighting the bonding characteristics and distinct features of uranium chemistry.

5.
Inorg Chem ; 60(13): 9504-9515, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34152757

ABSTRACT

The 24 trioxide halide molecules MO3X of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO4- ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnO3F have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn+7(d0) O-2(p6)3 F-(p6)] reaches its limits. The concept of real-valued spin orbitals φ(r)·α and φ(r)·ß breaks down for the heavy Bh-6d, At-6p and Ts-7p elements because of the dominating spin-orbit coupling. The vigorous decomposition of MnO3F at ambient conditions starts by the autocatalyzed release of n O2 and the formation of MnmO3m-2nFm clusters, triggered by the electron-depleted "oxylic" character of the oxide ligands in MnO3X.

6.
Inorg Chem ; 60(11): 7687-7696, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34029065

ABSTRACT

On reacting laser-ablated manganese or iron difluorides with O2 or O3 during codeposition in solid neon or argon, infrared absorptions of several new metal oxo-fluoride molecules, including OMF2, (η1-O2)MF2, (η2-O3)MF2, (η1-O2)2MF2 (M = Mn and Fe), and O2MnF, have been observed. Quantum chemical density functional and multiconfiguration wavefunction calculations have been applied to characterize these new products by their geometric and electronic structures, vibrations, charges, and bonding. The assignment of the main vibrational absorptions as dominant symmetric or antisymmetric M-F or M-O stretching modes is confirmed by oxygen isotopic shifts and quantum chemical calculations of frequencies and thermal stabilities. The tendency of Fe to form polyoxygen complexes in lower oxidation states than the preceding element Mn is affirmed experimentally and supported theoretically. The M-F stretching frequencies of the isolated metal oxo-fluorides may provide a scale for the local charge on the MF2 sites in active energy conversion systems. The study of these species provides insights for understanding the trend of oxidation state changes across the transition-metal series.

7.
Chemistry ; 27(23): 6848-6859, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33219726

ABSTRACT

Permanganyl fluoride's existence at the stability threshold in the series of oxides and oxide fluorides of the late 3d transition metals is reflected by its experimentally challenging properties and by the difficulties posed in the theoretical description of its bonding characteristics. The history of this molecule is reviewed from early qualitative observations and the growing scattered information on its chemical and physical properties to the accurate determination and interpretation of its molecular structure and spectral features. The still problematic theoretical models for MnO4 - and MnO3 F are briefly presented in the broader context of the chemistry of elements in high oxidation states. Short biographies of the scientists engaged in these studies are offered. Related technetium and rhenium compounds are briefly considered for comparison.

9.
Chemistry ; 26(67): 15558-15564, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32975862

ABSTRACT

The Periodic Table, and the unique chemical behavior of the first element in a column (group), were discovered simultaneously one and a half centuries ago. Half a century ago, this unique chemistry of the light homologs was correlated to the then available atomic orbital (AO) radii. The radially nodeless 1s, 2p, 3d, 4f valence AOs are particularly compact. The similarity of r(2s)≈r(2p) leads to pronounced sp-hybrid bonding of the light p-block elements, whereas the heavier p elements with n≥3 exhibit r(ns) ≪ r(np) of approximately -20 to -30 %. Herein, a comprehensive physical explanation is presented in terms of kinetic radial and angular, as well as potential nuclear-attraction and electron-screening effects. For hydrogen-like atoms and all inner shells of the heavy atoms, r(2s) ≫ r(2p) by +20 to +30 %, whereas r(3s)≳r(3p)≳r(3d), since in Coulomb potentials radial motion is more radial orbital expanding than angular motion. However, the screening of nuclear attraction by inner core shells is more efficient for s than for p valence shells. The uniqueness of the 2p AO is explained by this differential shielding. Thereby, the present work paves the way for future physical explanations of the 3d, 4f, and 5g cases.

10.
Inorg Chem ; 59(9): 6287-6300, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32309927

ABSTRACT

We have elucidated the complex reaction network of partial methanol oxidation, H3COH + O2 → H2CO + H2O2, at a visible-light-activated actinide photocatalyst. The reaction inertness of C-H bonds and O═O diradicals at ambient conditions is overcome through catalysis by photoexcited uranyl units (*UO22+) anchored on a mesoporous silicate. The electronic ground- and excited-state energy hypersurfaces are investigated with quasirelativistic density-functional and ab initio correlated wave function approaches. Our study suggests that the molecular cluster can react on the excited energy surface due to the longevity of excited uranyl, typical for f-element compounds. The theoretically predicted energy profiles, chemical intermediates, related radicals, and product species are consistent with various experimental findings. The uranyl excitation opens various reaction pathways for the oxidation of volatile organic compounds (VOCs) by "hole-driven hydrogen transfer" (HDHT) through several exothermic steps over low activation barriers toward environmentally clean or chemically interesting products. Quantum-chemical modeling reveals the high efficiency of the uranyl photocatalysis and directs the way to further understanding and improvement of VOC degradation, chemical synthesis, and biologic photochemical interactions between uranyl and the environment.

11.
Front Chem ; 8: 813, 2020.
Article in English | MEDLINE | ID: mdl-33490030

ABSTRACT

The chemical elements are the "conserved principles" or "kernels" of chemistry that are retained when substances are altered. Comprehensive overviews of the chemistry of the elements and their compounds are needed in chemical science. To this end, a graphical display of the chemical properties of the elements, in the form of a Periodic Table, is the helpful tool. Such tables have been designed with the aim of either classifying real chemical substances or emphasizing formal and aesthetic concepts. Simplified, artistic, or economic tables are relevant to educational and cultural fields, while practicing chemists profit more from "chemical tables of chemical elements." Such tables should incorporate four aspects: (i) typical valence electron configurations of bonded atoms in chemical compounds (instead of the common but chemically atypical ground states of free atoms in physical vacuum); (ii) at least three basic chemical properties (valence number, size, and energy of the valence shells), their joint variation across the elements showing principal and secondary periodicity; (iii) elements in which the (sp)8, (d)10, and (f)14 valence shells become closed and inert under ambient chemical conditions, thereby determining the "fix-points" of chemical periodicity; (iv) peculiar elements at the top and at the bottom of the Periodic Table. While it is essential that Periodic Tables display important trends in element chemistry we need to keep our eyes open for unexpected chemical behavior in ambient, near ambient, or unusual conditions. The combination of experimental data and theoretical insight supports a more nuanced understanding of complex periodic trends and non-periodic phenomena.

12.
Angew Chem Int Ed Engl ; 58(31): 10404-10407, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31287191

ABSTRACT

The conclusions of a recent Communication of Yoshida, Raebiger, Shudo, and Ohno published in this journal, that varying core orbital topologies with minuscule negative tails upon bond formation determine the different chemistries of carbon and silicon and affect ionization energies, excitation energies and bond properties of molecules, are now shown to be based on computational artifacts and oversimplified models. The all-electron wave function uniquely determines the observables, while its representation by one-electron orbital products depends on the details of the chosen approximation and therefore need to be considered with great care.

13.
J Comput Chem ; 40(26): 2248-2283, 2019 10 05.
Article in English | MEDLINE | ID: mdl-31251411

ABSTRACT

The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the "natural selection" process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the "standard model" of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another? © 2019 Wiley Periodicals, Inc.


Subject(s)
Quantum Theory , Thermodynamics , Humans
14.
Nat Commun ; 9(1): 2753, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30013067

ABSTRACT

Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing Ih(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.

15.
Angew Chem Int Ed Engl ; 57(12): 3242-3245, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29314484

ABSTRACT

The concept of oxidation state (OS) is based on the concept of Lewis electron pairs, in which the bonding electrons are assigned to the more electronegative element. This approach is useful for keeping track of the electrons, predicting chemical trends, and guiding syntheses. Experimental and quantum-chemical results reveal a limit near +8 for the highest OS in stable neutral chemical substances under ambient conditions. OS=+9 was observed for the isolated [IrO4 ]+ cation in vacuum. The prediction of OS=+10 for isolated [PtO4 ]2+ cations is confirmed computationally for low temperatures only, but hasn't yet been experimentally verified. For high OS species, oxidation of the ligands, for example, of O-2 with formation of . O-1 and O-O bonds, and partial reduction of the metal center may be favorable, possibly leading to non-Lewis type structures.

16.
Biotechnol Biofuels ; 10: 234, 2017.
Article in English | MEDLINE | ID: mdl-29046720

ABSTRACT

BACKGROUND: Glycoside hydrolases are important for various industrial and scientific applications. Determination of their temperature as well as pH optima and range is crucial to evaluate whether an enzyme is suitable for application in a biotechnological process. These basic characteristics of enzymes are generally determined by two separate measurements. However, these lead to a two-dimensional assessment of the pH range at one temperature (and vice versa) and do not allow prediction of the relative enzymatic performance at any pH/temperature combination of interest. In this work, we demonstrate a new method that is based on experimental data and visualizes the relationship among pH, temperature, and activity at a glance in a three-dimensional contour plot. RESULTS: In this study, we present a method to determine the relative activity of an enzyme at 96 different combinations of pH and temperature in parallel. For this purpose, we used a gradient PCR cycler and a citrate-phosphate-based buffer system in microtiter plates. The approach was successfully tested with various substrates and diverse assays for glycoside hydrolases. Furthermore, its applicability was demonstrated for single enzymes using the endoglucanase Cel8A from Clostridium thermocellum as well as the commercially available complex enzyme mixture Celluclast®. Thereby, we developed a fast and adaptable method to determine simultaneously both pH and temperature ranges of enzymes over a wide range of conditions, an easy transformation of the experimental data into a contour plot for visualization, and the necessary controls. With our method, the suitability of an enzyme or enzyme mixture for any chosen combination of temperature and pH can easily be assessed at a glance. CONCLUSIONS: We propose a method that offers significant advantages over commonly used methods to determine the pH and temperature ranges of enzymes. The overall relationship among pH, temperature, and activity is visualized. Our method could be applied to evaluate exactly what conditions have to be met for optimal utilization of an enzyme or enzyme mixture for both lab-scale and industrial processes. Adaptation to other enzymes, including proteases, should be possible and the method may also lead to a platform for additional applications, such as inactivation kinetics analysis.

17.
Chemistry ; 23(44): 10580-10589, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28516506

ABSTRACT

The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4 , whereas a low MOS of two appeared in the high-spin septet D2d species Fe(S2 )2 and (slightly excited) metastable Fe(O2 )2 . The ground states of all other molecules had intermediate MOS values, with S2- , S22- , S21- (and O2- , O1- , O22- , O21- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO4 and MS4 species provides insight into the periodicity of oxidation states and bonding.

18.
J Biotechnol ; 257: 122-130, 2017 Sep 10.
Article in English | MEDLINE | ID: mdl-28450260

ABSTRACT

Herbinix hemicellulosilytica is a newly isolated, gram-positive, anaerobic bacterium with extensive hemicellulose-degrading capabilities obtained from a thermophilic biogas reactor. In order to exploit its potential as a source for new industrial arabinoxylan-degrading enzymes, six new thermophilic xylanases, four from glycoside hydrolase family 10 (GH10) and two from GH11, three arabinofuranosidases (1x GH43, 2x GH51) and one ß-xylosidase (GH43) were selected. The recombinantly produced enzymes were purified and characterized. All enzymes were active on different xylan-based polysaccharides and most of them showed temperature-vs-activity profiles with maxima around 55-65°C. HPAEC-PAD analysis of the hydrolysates of wheat arabinoxylan and of various purified xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) was used to investigate their substrate and product specificities: among the GH10 xylanases, XynB showed a different product pattern when hydrolysing AXOS compared to XynA, XynC, and XynD. None of the GH11 xylanases was able to degrade any of the tested AXOS. All three arabinofuranosidases, ArfA, ArfB and ArfC, were classified as type AXH-m,d enzymes. None of the arabinofuranosidases was able to degrade the double-arabinosylated xylooligosaccharides XA2+3XX. ß-Xylosidase XylA (GH43) was able to degrade unsubstituted XOS, but showed limited activity to degrade AXOS.


Subject(s)
Clostridiales/enzymology , Glycoside Hydrolases/metabolism , Xylans/metabolism , Xylosidases/metabolism , Carbohydrate Metabolism , Cloning, Molecular , Clostridiales/genetics , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Enzyme Activation , Glucuronates/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hot Temperature , Hydrogen-Ion Concentration , Hydrolysis , Oligosaccharides/metabolism , Polysaccharides/metabolism , Recombinant Proteins , Substrate Specificity , Triticum , Xylosidases/chemistry , Xylosidases/genetics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism
19.
Dalton Trans ; 46(8): 2542-2550, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28154870

ABSTRACT

Actinyl-tricarbonato anions [(AnO2)(CO3)3]4- (An = U-Cm) in various environments were investigated using theoretical approaches of quantum-mechanics, molecular-mechanics and cluster-models. Cations and solvent molecules in the 2nd coordination sphere affect the equatorial An←Oeq bonds more than the axial An[triple bond, length as m-dash]Oax bonds. Common actinide contraction is found for calculated and experimental axial bond lengths of 92U to 94Pu, though no longer for 94Pu to 96Cm. The tendency of U to Pu forming actinyl(vi) species dwindles away toward Cm, which already features the preferred AnIII/LnIII oxidation state of the later actinides and all lanthanides. The well known change from d-type to typical U-Pu-Cm type and then to f-type behavior is labeled as the plutonium turn, a phenomenon that is caused by f-orbital energy-decrease and f-orbital localization with increase of both nuclear charge and oxidation state, and a non-linear variation of effective f-electron population across the actinide series. Both orbital and configuration mixing and occupation of antibonding 5f type orbitals increase, weakening the AnOax bonds and reducing the highest possible oxidation states of the later actinides.

20.
Inorg Chem ; 55(9): 4616-25, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27074099

ABSTRACT

Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.

SELECTION OF CITATIONS
SEARCH DETAIL
...