Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 55(9): 4616-25, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27074099

ABSTRACT

Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.

2.
J Chem Phys ; 142(13): 134308, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854244

ABSTRACT

Uranium chlorides are important in actinide chemistry and nuclear industries, but their chemical bonding and many physical and chemical properties are not well understood yet. Here, we report the first experimental observation of two gaseous uranium hexachloride anions, UCl6 (-) and UCl6 (2-), which are probed by photoelectron spectroscopy in conjunction with quantum chemistry calculations. The electron affinity of UCl6 is measured for the first time as +5.3 eV; its second electron affinity is measured to be +0.60 eV from the photoelectron spectra of UCl6 (2-). We observe that the detachment cross sections of the 5f electrons are extremely weak in the visible and UV energy ranges. It is found that the one-electron one-determinental molecular orbital picture and Koopmans' theorem break down for the strongly internally correlated U-5f(2) valence shell of tetravalent U(+4) in UCl6 (2-). The calculated adiabatic and vertical electron detachment energies from ab initio calculations agree well with the experimental observations. Electronic structure and chemical bonding in the uranium hexachloride species UCl6 (2-) to UCl6 are discussed as a function of the oxidation state of U.

3.
Inorg Chem ; 52(24): 14237-45, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24274785

ABSTRACT

In neutral chemical compounds, the highest known oxidation state of all elements in the Periodic Table is +VIII. While PuO4 is viewed as an exotic Pu(+VIII) complex, we have shown here that no stable electronic homologue of octavalent RuO4 and OsO4 exists for PuO4, even though Pu has the same number of eight valence electrons as Ru and Os. Using quantum chemical approaches at the levels of quasi-relativistic DFT, MP2, CCSD(T), and CASPT2, we find the ground state of PuO4 as a quintet (5)C2v-(PuO2)(+)(O2)(-) complex with the leading valence configuration of an (f(3))plutonyl(V) unit, loosely coupled to a superoxido (π*(3))O2(-) ligand. This stable isomer is likely detectable as a transient species, while the previously suggested planar (1)D4h-Pu(VIII)O4 isomer is only metastable. Through electronic structure analyses, the bonding and the oxidation states are explained and rationalized. We have predicted the characteristics of the electronic and vibrational spectra to assist future experimental identification of (PuO2)(+)(O2)(-) by IR, UV-vis, and ionization spectroscopy.


Subject(s)
Electrons , Models, Molecular , Oxides/chemistry , Plutonium/chemistry , Quantum Theory , Isomerism , Oxidation-Reduction
4.
Inorg Chem ; 52(17): 9867-74, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23957772

ABSTRACT

The tetraoxo pertechnetate anion (TcO4(-)) is of great interest for nuclear waste management and radiopharmceuticals. To elucidate its electronic structure and to compare with that of its lighter congener MnO4(-), the photoelectron and electronic absorption spectra of MnO4(-) and TcO4(-) are investigated with density functional theory (DFT) and ab initio wave function theory (WFT). The vertical electron detachment energies (VDEs) of MnO4(-) obtained with the CR-EOM-CCSD(T) method are in good agreement with the lowest two experimental VDEs; the differences are less than 0.1 eV, representing a significant improvement over the IP-EOM-CCSD(T) result in the literature. Combining our CCSD(T) and CR-EOM-CCSD(T) results, the first five VDEs of TcO4(-) are estimated between 5 and 10 eV with an estimated accuracy of about ±0.2 eV. The vertical excitation energies are determined by using TD-DFT, CR-EOM-CCSD(T), and RAS-PT2 methods. The excitation energies and the assignments of the spectra are analyzed and partly improved. They are compared with reported SAC-CI results and available experimental data. Both dynamic and nondynamic electron correlations are important in the ground and excited states of MnO4(-) and TcO4(-). Nondynamical correlations are particularly relevant in TcO4(-) for reliable prediction of excitation energies. In TcO4(-) one Rydberg state interlaces but does not mix with the valence excited states, and it disappears in the condensed phase.

5.
J Phys Chem A ; 116(50): 12299-304, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23148711

ABSTRACT

The change ΔR(x) of bond length R(x) for atom X in a molecule upon electronic transition can be derived from the intensities I(i) of the vibrational stretching progression v = 0 → i of the electronic absorption or emission spectrum. In many cases, a simple model is sufficient for a reasonable estimate of ΔR(x). For symmetric molecules, however, conceptual problems in the literature of many decades are evident. The breathing modes of various types of symmetric molecules X(n) and AX(n) (A at the center) are here discussed. In the simplest case of a harmonic vibration of the same mode in the initial and final electronic states, we obtain ΔR(x) ≈ [2S/(ωm(x))](1/2)/w(1/2) (all quantities in atomic units). ω and S are respectively the observed vibrational quanta and the Huang-Rhys factor (corresponding, e.g., to the vibrational intensity ratio I(1)/I(0) ≈ S), m(x) is the mass of vibrating atom X, and w is a topological factor for molecule X(n) or AX(n). The factor 1/w(1/2) in the expression for ΔR(x) must not be neglected. The spectra and bond length changes of several symmetric molecules AX(n) and X(n) are discussed. The experimental bond length changes correctly derived with factor 1/w(1/2) are verified by reliable quantum chemical calculations.

6.
Inorg Chem ; 51(5): 3231-8, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22360407

ABSTRACT

Electronic states and spectra of NpO(2)(2+) and NpO(2)Cl(4)(2-) with a Np 5f(1) ground-state configuration, related to low-lying 5f-5f and ligand-to-metal charge-transfer (CT) transitions, are investigated, using restricted-active-space perturbation theory (RASPT2) with spin-orbit coupling. Restrictions on the antibonding orbital occupations have little influence on the 5f-5f transition energies, but an important impact on the CT states with an open bonding orbital shell. The present calculations provide significant improvement over previous literature results. The assignment of the experimental electronic spectra of Cs(2)NpO(2)Cl(4) is refined, based on our calculations of NpO(2)Cl(4)(2-). Assignments on the basis of bare NpO(2)(2+) are less reliable, since the equatorial Cl ligands perturb the excited-state energies considerably. Calculated changes of the Np-O bond lengths are in agreement with the observed short symmetric-stretching progressions in the f-f spectra and longer progressions in the CT spectra of neptunyl. A possible luminescence spectrum of the lowest quartet CT state is predicted.

7.
J Chem Theory Comput ; 7(10): 3293-303, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-26598163

ABSTRACT

The electronic absorption and emission spectra of free UO2Cl2 and its Ar-coordinated complexes below 27 000 cm(-1) are investigated at the levels of ab initio complete active space second-order perturbation theory (CASPT2) and coupled-cluster singles and doubles and perturbative triples [CCSD(T)] using valence 3ζ-polarized basis sets. The influence of the argon matrix in the 12K experiment on the electronic spectra is explored by investigating the excited states of argon complexes ArnUO2Cl2. The calculated two most stable complexes with n = 2, 3 can explain the observed two matrix sites corresponding to the experimental two-component luminescence decay. In these uranyl complexes, Ar-coordination is found to have little influence on the (3)Φ (Ω = 2g) character of the luminescent state and on the electronic spectral shape. The calculations yield a coherent assignment of the experimental excitation spectra that improves on previous assignments. The simulated luminescence spectral curves based on the calculated spectral parameters of UO2Cl2 from both CASPT2 and CCSD(T) agree well with experiment.

8.
J Comput Chem ; 28(1): 411-22, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17143871

ABSTRACT

In 1916, Lewis and Kossel laid the empirical ground for the electronic theory of valence, whose quantum theoretical foundation was uncovered only slowly. We can now base the classification of the various traditional chemical bond types in a threefold manner on the one- and two-electron terms of the quantum-physical Hamiltonian (kinetic, atomic core attraction, electron repulsion). Bond formation is explained by splitting up the real process into two physical steps: (i) interaction of undeformed atoms and (ii) relaxation of this nonstationary system. We aim at a flexible bond energy partitioning scheme that can avoid cancellation of large terms of opposite sign. The driving force of covalent bonding is a lowering of the quantum kinetic energy density by sharing. The driving force of heteropolar bonding is a lowering of potential energy density by charge rearrangement in the valence shell. Although both mechanisms are quantum mechanical in nature, we can easily visualize them, since they are of one-electron type. They are however tempered by two-electron correlations. The richness of chemistry, owing to the diversity of atomic cores and valence shells, becomes intuitively understandable with the help of effective core pseudopotentials for the valence shells. Common conceptual difficulties in understanding chemical bonds arise from quantum kinematic aspects as well as from paradoxical though classical relaxation phenomena. On this conceptual basis, a dozen different bond types in diatomic molecules will be analyzed in the following article. We can therefore examine common features as well as specific differences of various bonding mechanisms.

9.
Chemistry ; 12(15): 4101-14, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16544343

ABSTRACT

Quite different meanings are attached by chemists to the words element, atom, orbital, order of orbitals or configurations. This causes conceptual inconsistencies, in particular with respect to the transition-metal elements and their atoms or ions. The different meanings will here be distinguished carefully. They are analyzed on the basis of empirical atomic spectral data and quasi-relativistic density functional calculations. The latter are quite reliable for different average configuration energies of transition-metal atoms. The so-called "configurations of the chemical elements", traditionally displayed in periodic tables, are the dominant configurations of the lowest spin-orbit levels of the free atoms. They are chemically rather irrelevant. In many-electron systems the ns and np AOs are significantly below the more hydrogen-like nd ones. Even (n+1)s is below nd for all light neutral atoms from C onwards, but only up to the first elements of the respective long rows! The most common orbital order in transition-metal atoms is 3p << 3d < 4s etc. The chemically relevant configuration in group g is always d(g) instead of d(g-2) s(2). Conceptually clear reasoning eliminates apparent textbook inconsistencies between simple quantum-chemical models and the empirical facts. The empirically and theoretically well-founded Rydberg (n-deltal) rule is to be preferred instead of the historical Madelung (n+l) rule with its large number of exceptions.

10.
J Comput Chem ; 23(8): 804-13, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12012357

ABSTRACT

Although most neutral d- and f-block atoms have nd(g-2)(n + 1)s(2) and (n - 1)f(g-2)(n + 1)s(2) ground configurations, respectively, where g is the group number (i.e., number of valence electrons), one-third of these 63 atoms prefer a higher d-population, namely via (n + 1)s-->nd "outer" to "inner" electron shift (particularly atoms from the second d-row), or via (n - 1)f-->nd "inner" to "outer" electron shift (particularly atoms from the second f-row). Although the response to the modified self-consistent field is orbital destabilization and expansion for (n + 1)s-->nd, and stabilization and contraction for (n - 1)f-->nd, the relativistic modification of the valence orbital responses is stabilization in both cases. This is explained by double perturbation theory. Accordingly, electron configuration and relativity trigger the orbital energies, the orbital populations and the chemical shell effects in different ways. The particularly pronounced relativistic effects in groups 10 and 11, the so-called gold maximum, occur because of particularly efficient cooperative nonrelativistic shell effects and relativistic stabilization effects (inverse indirect effect) at the end of the d-block.

SELECTION OF CITATIONS
SEARCH DETAIL
...