Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0282266, 2023.
Article in English | MEDLINE | ID: mdl-36848335

ABSTRACT

Surface structuring using nano-second lasers can be used to enhance certain properties of a material or even to introduce new ones. One way to create these structures efficiently is direct laser interference patterning using different polarization vector orientations of the interfering beams. However, experimentally measuring the fabrication process of these structures is very challenging due to small length and time scales. Therefore, a numerical model is developed and presented for resolving the physical effects during formation the predicting the resolidified surface structures. This three-dimensional, compressible computational fluid dynamics model considers the gas, liquid, and solid material phase and includes various physical effects, such as heating due to the laser beam for both parallel and radial polarization vector orientations, melting, solidification, and evaporation, Marangoni convection, and volumetric expansion. The numerical results reveal a very good qualitatively and quantitatively agreement with experimental reference data. Resolidified surface structures match both in overall shape as well as crater diameter and height, respectively. Furthermore, this model gives valuable insight on different quantities during the formation of these surface structures, such as velocity and temperature. In future, this model can be used to predict surface structures based on various process input parameters.


Subject(s)
Convection , Heating , Computer Simulation , Hydrodynamics , Lasers
2.
J Voice ; 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35667988

ABSTRACT

OBJECTIVES: The SARS-CoV-2 pandemic has forced choirs to pause or at least to restrict rehearsals and concerts. Nevertheless, an uncertainty about the risks of infection while singing remains, especially with regard to distances, duration of singing, number of singers and their positions in the room, size of the room as well as ventilation strategies. Based on the assumption that CO2 is a suitable indicator for the exhaled aerosols in a room, it is the aim of this study to deduce recommendations for a choir rehearsal with a minimum risk of infection. METHODS: During two choir rehearsals in a typical, nonventilated classroom, we installed 30 CO2 sensors, which allow spatial and temporal evaluation of the CO2 dispersion during singing. Various singing and ventilation phases were applied and the rates of CO2 increase during singing as well as its decrease during ventilation phases were evaluated and compared for different scenarios. RESULTS: The measurements reveal a linear relation between the duration of singing, size of the room and number of persons. For our size of the room of 200 m3 the average CO2 increase is 1.83 ppm/min per person. Masks or pure breathing without singing do - in contrast to aerosol dispersion - not influence the rate of CO2 increase. CO2 disperses fast and homogeneously on horizontal planes. However, a vertical layering with a maximum CO2 concentration is observed near the ceiling. Shock ventilation shows the largest CO2 decrease within the first 5 min, after 10 min of ventilation the outside base concentration of 400 ppm is reached again. CONCLUSION: The evaluated relations allow to calculate safe singing times for a defined number of singers and size of the room until a critical threshold of 800 ppm is reached. Furthermore, in order to monitor the actual CO2 concentration during choir rehearsal, just one CO2 sensor is representative for the air quality and CO2 concentration of the whole room and thus considered sufficient. For an early warning, it should be installed near the ceiling. Direct singing into a sensor should be avoided. A ventilation time of just 5 min is recommended which represents a compromise between strong CO2 reduction and still sufficient room temperature during winter time.

3.
Sci Rep ; 12(1): 1244, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075158

ABSTRACT

An in vitro experiment on the dissolved oxygen transport during liquid ventilation by means of measuring global oxygen concentration fields is presented within this work. We consider the flow in an idealized four generation model of the human airways in a range of peak Reynolds numbers of [Formula: see text]-3400 and Womersley numbers of [Formula: see text]-5. Fluorescence quenching measurements were employed in order to visualize and quantify the oxygen distribution with high temporal and spatial resolution during the breathing cycle. Measurements with varying tidal volumes and oscillating frequencies reveal short living times of characteristic concentration patterns for all parameter variations. Similarities to typical velocity patterns in similar lung models persist only in early phases during each cycle. Concentration gradients are quickly homogenized by secondary motions within the lung model. A strong dependency of peak oxygen concentration on tidal volume is observed with considerably higher relative concentrations for higher tidal volumes.


Subject(s)
Liquid Ventilation , Models, Biological , Oxygen/metabolism , Respiration , Humans
4.
Materials (Basel) ; 13(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151029

ABSTRACT

Many practical aspects of processing fresh concrete depend on its rheology, such as the pumping of the material. It is known that a lubricating layer is formed in the process, which significantly reduces the pumping pressure. However, these phenomena can hardly be considered in the usual rheological measurements. A main problem is the optical inaccessibility of the material, which prevents estimations about, e.g., the thickness of the plug flow or particle migration. In this paper, the pneumatic pumping of a transparent model concrete is performed by means of a test plant. The flow profile over the entire pipe cross-section is resolved in time and space via Particle Image Velocimetry (PIV) measurements. This allows the comparison with the analytical flow profile from rheological measurements of the material using the Buckingham-Reiner equation. A reduction of the pressure loss to around 60% induced through segregation of the material is found. These measurements reflect the rheology of the material under realistic pumping conditions including particle migration. This makes it possible for the first time to observe a transparent material with concrete-like rheology under pulsating pumping conditions and to compare the true and calculated time-resolved pressure loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...