Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37584673

ABSTRACT

MOTIVATION: Mixed molecular data combines continuous and categorical features of the same samples, such as OMICS profiles with genotypes, diagnoses, or patient sex. Like all high-dimensional molecular data, it is prone to incorrect values that can stem from various sources for example the technical limitations of the measurement devices, errors in the sample preparation, or contamination. Most anomaly detection algorithms identify complete samples as outliers or anomalies. However, in most cases, not all measurements of those samples are erroneous but only a few one-dimensional features within the samples are incorrect. These one-dimensional data errors are continuous measurements that are either located outside or inside the normal ranges of their features but in both cases show atypical values given all other continuous and categorical features in the sample. Additionally, categorical anomalies can occur for example when the genotype or diagnosis was submitted wrongly. RESULTS: We introduce ADMIRE (Anomaly Detection using MIxed gRaphical modEls), a novel approach for the detection and correction of anomalies in mixed high-dimensional data. Hereby, we focus on the detection of single (one-dimensional) data errors in the categorical and continuous features of a sample. For that the joint distribution of continuous and categorical features is learned by mixed graphical models, anomalies are detected by the difference between measured and model-based estimations and are corrected using imputation. We evaluated ADMIRE in simulation and by screening for anomalies in one of our own metabolic datasets. In simulation experiments, ADMIRE outperformed the state-of-the-art methods of Local Outlier Factor, stray, and Isolation Forest. AVAILABILITY AND IMPLEMENTATION: All data and code is available at https://github.com/spang-lab/adadmire. ADMIRE is implemented in a Python package called adadmire which can be found at https://pypi.org/project/adadmire.


Subject(s)
Algorithms , Software , Humans , Computer Simulation , Genotype
2.
Sci Rep ; 10(1): 7876, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398793

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is commonly classified by gene expression profiling according to its cell of origin (COO) into activated B-cell (ABC)-like and germinal center B-cell (GCB)-like subgroups. Here we report the application of label-free nano-liquid chromatography - Sequential Window Acquisition of all THeoretical fragment-ion spectra - mass spectrometry (nanoLC-SWATH-MS) to the COO classification of DLBCL in formalin-fixed paraffin-embedded (FFPE) tissue. To generate a protein signature capable of predicting Affymetrix-based GCB scores, the summed log2-transformed fragment ion intensities of 780 proteins quantified in a training set of 42 DLBCL cases were used as independent variables in a penalized zero-sum elastic net regression model with variable selection. The eight-protein signature obtained showed an excellent correlation (r = 0.873) between predicted and true GCB scores and yielded only 9 (21.4%) minor discrepancies between the three classifications: ABC, GCB, and unclassified. The robustness of the model was validated successfully in two independent cohorts of 42 and 31 DLBCL cases, the latter cohort comprising only patients aged >75 years, with Pearson correlation coefficients of 0.846 and 0.815, respectively, between predicted and NanoString nCounter based GCB scores. We further show that the 8-protein signature is directly transferable to both a triple quadrupole and a Q Exactive quadrupole-Orbitrap mass spectrometer, thus obviating the need for proprietary instrumentation and reagents. This method may therefore be used for robust and competitive classification of DLBCLs on the protein level.


Subject(s)
Cell Lineage/genetics , Gene Expression Profiling/methods , Lymphoma, Large B-Cell, Diffuse/genetics , Proteins/metabolism , Proteome/metabolism , Proteomics/methods , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Chromatography, Liquid/methods , Formaldehyde , Germinal Center/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/metabolism , Mass Spectrometry/methods , Nanotechnology/methods , Paraffin Embedding/methods , Proteins/genetics , Proteome/genetics , Tissue Fixation/methods
3.
BMC Cancer ; 19(1): 322, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30953469

ABSTRACT

BACKGROUND: MYC is a heterogeneously expressed transcription factor that plays a multifunctional role in many biological processes such as cell proliferation and differentiation. It is also associated with many types of cancer including the malignant lymphomas. There are two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a superior outcome. METHODS: To shed light on this phenomenon, we investigated the different modes of actions of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation (DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for transcriptional activity. These data were supplemented with gene expression data derived from RNA-Seq. RESULTS: Bioinformatics integration of all data sets revealed different MYC-binding patterns and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed in BL but not in DLBCL regardless of MYC translocation. CONCLUSION: Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, metastasis and invasion, it might also be instrumental to better understand the different pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and DLBCL.


Subject(s)
Antigens, CD/genetics , Burkitt Lymphoma/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Proto-Oncogene Proteins c-myc/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Computational Biology , Datasets as Topic , Gene Expression Profiling , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-myc/genetics , Receptors, G-Protein-Coupled , Sequence Analysis, RNA , Translocation, Genetic
4.
Nat Commun ; 9(1): 1514, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666362

ABSTRACT

Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYClow cells depends on glutaminolysis. By 13C- and 15N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology.


Subject(s)
Aspartate Aminotransferase, Mitochondrial/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , STAT3 Transcription Factor/metabolism , Transcription Factor RelA/metabolism , Aspartate Aminotransferase, Mitochondrial/metabolism , B-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cellular Reprogramming/genetics , Cohort Studies , Female , Humans , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Phosphorylation , Prognosis , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/genetics , Survival Analysis
5.
J Proteome Res ; 16(3): 1105-1120, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28161958

ABSTRACT

Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are pathologically and clinically distinct subtypes of aggressive non-Hodgkin B-cell lymphoma. To learn more about their biology, we employed metabolomic and proteomic methods to study both established cell lines as well as cryopreserved and formalin-fixed paraffin-embedded (FFPE) tissue sections of BL and DLBCL. Strikingly, NMR analyses revealed DLBCL cell lines to produce and secrete significantly (padj = 1.72 × 10-22) more pyruvic acid than BL cell lines. This finding could be reproduced by targeted GC/MS analyses of cryopreserved tissue sections of BL and DLBCL cases. Enrichment analysis of an overlapping set of N = 2315 proteins, that had been quantified by nanoLC-SWATH-MS in BL and DLBCL cultured cells and cryosections, supported the observed difference in pyruvic acid content, as glycolysis and pyruvate metabolism were downregulated, while one-carbon metabolism was upregulated in BL compared to DLBCL. Furthermore, 92.1% of the overlapping significant proteins showed the same direction of regulation in cryopreserved and FFPE material. Proteome data are available via ProteomeXchange with identifier PXD004936.


Subject(s)
Burkitt Lymphoma/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Metabolomics/methods , Proteomics/methods , Pyruvic Acid/metabolism , Cell Line, Tumor , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy , Pyruvic Acid/blood , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...