Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Brain Res Bull ; : 111026, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971478

ABSTRACT

Achromatopsia is an inherited retinal disease that affects 1 in 30,000 to 50,000 individuals and is characterised by an absence of functioning cone photoreceptors from birth. This results in severely reduced visual acuity, no colour vision, marked sensitivity to light and involuntary oscillations of the eyes (nystagmus). In most cases, a single gene mutation prevents normal development of cone photoreceptors, with mutations in the CNGB3 or CNGA3 gene being responsible for ~80% of all patients with achromatopsia. There are a growing number of studies investigating recovery of cone function after targeted gene therapy. These studies have provided some promise for patients with the CNGA3 mutation, but thus far have found limited or no recovery for patients with the CNGB3 mutation. Here, we developed colour-calibrated visual stimuli designed to isolate cone photoreceptor responses. We combined these with adapted fMRI techniques and pRF mapping to identify if cortical responses to cone-driven signals could be detected in 9 adult patients with the CNGB3 mutation after receiving gene therapy. We did not detect any change in brain activity after gene therapy when the 9 patients were analysed as a group. However, on an individual basis, one patient self-reported a change in colour perception, corroborated by improved performance on a psychophysical task designed to selectively identify cone function. This suggests a level of cone sensitivity that was lacking pre-treatment, further supported by a subtle but reliable change in cortical activity within their primary visual cortex.

2.
Cortex ; 172: 236-237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087757
3.
R Soc Open Sci ; 10(8): 230380, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37564060

ABSTRACT

The visual cortex contains information about stimuli even when they are not consciously perceived. However, it remains unknown whether the visual system integrates local features into global objects without awareness. Here, we tested this by measuring brain activity in human observers viewing fragmented shapes that were either visible or rendered invisible by fast counterphase flicker. We then projected measured neural responses to these stimuli back into visual space. Visible stimuli caused robust responses reflecting the positions of their component fragments. Their neural representations also strongly resembled one another regardless of local features. By contrast, representations of invisible stimuli differed from one another and, crucially, also from visible stimuli. Our results demonstrate that even the early visual cortex encodes unconscious visual information differently from conscious information, presumably by only encoding local features. This could explain previous conflicting behavioural findings on unconscious visual processing.

4.
Hum Brain Mapp ; 44(16): 5221-5237, 2023 11.
Article in English | MEDLINE | ID: mdl-37555758

ABSTRACT

Human visual cortex contains topographic visual field maps whose organization can be revealed with retinotopic mapping. Unfortunately, constraints posed by standard mapping hinder its use in patients, atypical subject groups, and individuals at either end of the lifespan. This severely limits the conclusions we can draw about visual processing in such individuals. Here, we present a novel data-driven method to estimate connective fields, resulting in fine-grained maps of the functional connectivity between brain areas. We find that inhibitory connectivity fields accompany, and often surround facilitatory fields. The visual field extent of these inhibitory subfields falls off with cortical magnification. We further show that our method is robust to large eye movements and myopic defocus. Importantly, freed from the controlled stimulus conditions in standard mapping experiments, using entertaining stimuli and unconstrained eye movements our approach can generate retinotopic maps, including the periphery visual field hitherto only possible to map with special stimulus displays. Generally, our results show that the connective field method can gain knowledge about retinotopic architecture of visual cortex in patients and participants where this is at best difficult and confounded, if not impossible, with current methods.


Subject(s)
Eye Movements , Visual Cortex , Humans , Retina/diagnostic imaging , Brain Mapping/methods , Visual Cortex/diagnostic imaging , Visual Fields , Visual Pathways , Magnetic Resonance Imaging/methods
5.
Psychol Sci ; 34(4): 512-522, 2023 04.
Article in English | MEDLINE | ID: mdl-36730433

ABSTRACT

In April 2019, Psychological Science published its first issue in which all Research Articles received the Open Data badge. We used that issue to investigate the effectiveness of this badge, focusing on the adherence to its aim at Psychological Science: sharing both data and code to ensure reproducibility of results. Twelve researchers of varying experience levels attempted to reproduce the results of the empirical articles in the target issue (at least three researchers per article). We found that all 14 articles provided at least some data and six provided analysis code, but only one article was rated to be exactly reproducible, and three were rated as essentially reproducible with minor deviations. We suggest that researchers should be encouraged to adhere to the higher standard in force at Psychological Science. Moreover, a check of reproducibility during peer review may be preferable to the disclosure method of awarding badges.


Subject(s)
Editorial Policies , Periodicals as Topic , Psychology , Humans , Reproducibility of Results , Research/standards , Information Dissemination
6.
Neuroimage ; 263: 119557, 2022 11.
Article in English | MEDLINE | ID: mdl-35970472

ABSTRACT

Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and circular sorting of change scores are selection practices that result in artifactual changes even without circular data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight the urgency for us researchers to make the validation of analysis pipelines standard practice.


Subject(s)
Data Analysis
7.
Brain ; 145(11): 3803-3815, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35998912

ABSTRACT

Recent advances in regenerative therapy have placed the treatment of previously incurable eye diseases within arms' reach. Achromatopsia is a severe monogenic heritable retinal disease that disrupts cone function from birth, leaving patients with complete colour blindness, low acuity, photosensitivity and nystagmus. While successful gene-replacement therapy in non-primate models of achromatopsia has raised widespread hopes for clinical treatment, it was yet to be determined if and how these therapies can induce new cone function in the human brain. Using a novel multimodal approach, we demonstrate for the first time that gene therapy can successfully activate dormant cone-mediated pathways in children with achromatopsia (CNGA3- and CNGB3-associated, 10-15 years). To test this, we combined functional MRI population receptive field mapping and psychophysics with stimuli that selectively measure cone photoreceptor signalling. We measured cortical and visual cone function before and after gene therapy in four paediatric patients, evaluating treatment-related change against benchmark data from untreated patients (n = 9) and normal-sighted participants (n = 28). After treatment, two of the four children displayed strong evidence for novel cone-mediated signals in visual cortex, with a retinotopic pattern that was not present in untreated achromatopsia and which is highly unlikely to emerge by chance. Importantly, this change was paired with a significant improvement in psychophysical measures of cone-mediated visual function. These improvements were specific to the treated eye, and provide strong evidence for successful read-out and use of new cone-mediated information. These data show for the first time that gene replacement therapy in achromatopsia within the plastic period of development can awaken dormant cone-signalling pathways after years of deprivation. This reveals unprecedented neural plasticity in the developing human nervous system and offers great promise for emerging regenerative therapies.


Subject(s)
Color Vision Defects , Humans , Child , Color Vision Defects/genetics , Color Vision Defects/therapy , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Electroretinography , Retinal Cone Photoreceptor Cells , Genetic Therapy
8.
Hum Brain Mapp ; 43(17): 5111-5125, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35796159

ABSTRACT

The physiological blind spot is a naturally occurring scotoma corresponding with the optic disc in the retina of each eye. Even during monocular viewing, observers are usually oblivious to the scotoma, in part because the visual system extrapolates information from the surrounding area. Unfortunately, studying this visual field region with neuroimaging has proven difficult, as it occupies only a small part of retinotopic cortex. Here, we used functional magnetic resonance imaging and a novel data-driven method for mapping the retinotopic organization in and around the blind spot representation in V1. Our approach allowed for highly accurate reconstructions of the extent of an observer's blind spot, and out-performed conventional model-based analyses. This method opens exciting opportunities to study the plasticity of receptive fields after visual field loss, and our data add to evidence suggesting that the neural circuitry responsible for impressions of perceptual completion across the physiological blind spot most likely involves regions of extrastriate cortex-beyond V1.


Subject(s)
Optic Disk , Visual Cortex , Humans , Scotoma/diagnostic imaging , Scotoma/etiology , Scotoma/pathology , Visual Cortex/physiology , Visual Fields , Optic Disk/pathology , Optic Disk/physiology , Visual Field Tests/adverse effects , Brain Mapping
9.
Commun Biol ; 5(1): 181, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233067

ABSTRACT

Brain activity in retinotopic cortex reflects illusory changes in stimulus position. Is this neural signature a general code for apparent position? Here we show that responses in primary visual cortex (V1) are consistent with perception of the Muller-Lyer illusion; however, we found no such signature for another striking illusion, the curveball effect. This demonstrates that V1 does not encode apparent position per se.


Subject(s)
Illusions , Primary Visual Cortex , Humans , Illusions/physiology , Photic Stimulation
10.
Neuroimage ; 239: 118286, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34153449

ABSTRACT

How much of the functional organization of our visual system is inherited? Here we tested the heritability of retinotopic maps in human visual cortex using functional magnetic resonance imaging. We demonstrate that retinotopic organization shows a closer correspondence in monozygotic (MZ) compared to dizygotic (DZ) twin pairs, suggesting a partial genetic determination. Using population receptive field (pRF) analysis to examine the preferred spatial location and selectivity of these neuronal populations, we estimate a heritability around 10-20% for polar angle preferences and spatial selectivity, as quantified by pRF size, in extrastriate areas V2 and V3. Our findings are consistent with heritability in both the macroscopic arrangement of visual regions and stimulus tuning properties of visual cortex. This could constitute a neural substrate for variations in a range of perceptual effects, which themselves have been found to be at least partially genetically determined. These findings also add convergent evidence for the hypothesis that functional map topology is linked with cortical morphology.


Subject(s)
Quantitative Trait, Heritable , Visual Cortex/anatomy & histology , Visual Fields/genetics , Adolescent , Adult , Biological Variation, Individual , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Photic Stimulation , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Visual Cortex/physiology , Young Adult
11.
J Neurosci ; 41(25): 5511-5521, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34016715

ABSTRACT

The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."


Subject(s)
Facial Recognition/physiology , Occipital Lobe/physiology , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Visual Pathways/physiology
13.
Neuroimage ; 220: 116926, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32442640

ABSTRACT

Our visual system readily groups dynamic fragmented input into global objects. How the brain represents global object perception remains however unclear. To address this question, we recorded brain responses using functional magnetic resonance imaging whilst observers viewed a dynamic bistable stimulus that could either be perceived globally (i.e., as a grouped and coherently moving shape) or locally (i.e., as ungrouped and incoherently moving elements). We further estimated population receptive fields and used these to back-project the brain activity measured during stimulus perception into visual space via a searchlight procedure. Global perception resulted in universal suppression of responses in lower visual cortex accompanied by wide-spread enhancement in higher object-sensitive cortex. However, follow-up experiments indicated that higher object-sensitive cortex is suppressed if global perception lacks shape grouping, and that grouping-related suppression can be diffusely confined to stimulated sites and accompanied by background enhancement once stimulus size is reduced. These results speak to a non-generic involvement of higher object-sensitive cortex in perceptual grouping and point to an enhancement-suppression mechanism mediating the perception of figure and ground.


Subject(s)
Form Perception/physiology , Motion Perception/physiology , Visual Cortex/diagnostic imaging , Visual Perception/physiology , Adult , Brain Mapping/methods , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Visual Cortex/physiology , Young Adult
14.
Cortex ; 128: 107-123, 2020 07.
Article in English | MEDLINE | ID: mdl-32334151

ABSTRACT

Albinism is a congenital disorder where misrouting of the optic nerves at the chiasm gives rise to abnormal visual field representations in occipital cortex. In typical human development, the left occipital cortex receives retinal input predominantly from the right visual field, and vice-versa. In albinism, there is a more complete decussation of optic nerve fibers at the chiasm, resulting in partial representation of the temporal hemiretina (ipsilateral visual field) in the contralateral hemisphere. In this study, we characterize the receptive field properties for these abnormal representations by conducting detailed fMRI population receptive field mapping in a rare subset of participants with albinism and no ocular nystagmus. We find a nasal bias for receptive field positions in the abnormal temporal hemiretina representation. In addition, by modelling responses to bilateral visual field stimulation in the overlap zone, we found evidence in favor of discrete unilateral receptive fields, suggesting a conservative pattern of spatial selectivity in the presence of abnormal retinal input.


Subject(s)
Albinism , Visual Cortex , Humans , Photic Stimulation , Visual Fields , Visual Pathways
15.
Neuroimage ; 211: 116636, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32070751

ABSTRACT

Population receptive field (pRF) modelling is a common technique for estimating the stimulus-selectivity of populations of neurons using neuroimaging. Here, we aimed to address if pRF properties estimated with this method depend on the spatio-temporal structure and the predictability of the mapping stimulus. We mapped the polar angle preference and tuning width of voxels in visual cortex (V1-V4) of healthy, adult volunteers. We compared sequences sweeping orderly through the visual field or jumping from location to location employing stimuli of different width (45° vs 6°) and cycles of variable duration (8s vs 60s). While we did not observe any systematic influence of stimulus predictability, the temporal structure of the sequences significantly affected tuning width estimates. Ordered designs with large wedges and short cycles produced systematically smaller estimates than random sequences. Interestingly, when we used small wedges and long cycles, we obtained larger tuning width estimates for ordered than random sequences. We suggest that ordered and random mapping protocols show different susceptibility to other design choices such as stimulus type and duration of the mapping cycle and can produce significantly different pRF results.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Models, Theoretical , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adult , Female , Humans , Young Adult
16.
Neuroimage ; 199: 245-260, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31158480

ABSTRACT

The processing of motion changes throughout the visual hierarchy, from spatially restricted 'local motion' in early visual cortex to more complex large-field 'global motion' at later stages. Here we used functional magnetic resonance imaging (fMRI) to examine spatially selective responses in these areas related to the processing of random-dot stimuli defined by differences in motion. We used population receptive field (pRF) analyses to map retinotopic cortex using bar stimuli comprising coherently moving dots. In the first experiment, we used three separate background conditions: no background dots (dot-defined bar-only), dots moving coherently in the opposite direction to the bar (kinetic boundary) and dots moving incoherently in random directions (global motion). Clear retinotopic maps were obtained for the bar-only and kinetic-boundary conditions across visual areas V1-V3 and in higher dorsal areas. For the global-motion condition, retinotopic maps were much weaker in early areas and became clear only in higher areas, consistent with the emergence of global-motion processing throughout the visual hierarchy. However, in a second experiment we demonstrate that this pattern is not specific to motion-defined stimuli, with very similar results for a transparent-motion stimulus and a bar defined by a static low-level property (dot size) that should have driven responses particularly in V1. We further exclude explanations based on stimulus visibility by demonstrating that the observed differences in pRF properties do not follow the ability of observers to localise or attend to these bar elements. Rather, our findings indicate that dorsal extrastriate retinotopic maps may primarily be determined by the visibility of the neural responses to the bar relative to the background response (i.e. neural signal-to-noise ratios) and suggests that claims about stimulus selectivity from pRF experiments must be interpreted with caution.


Subject(s)
Brain Mapping/methods , Motion Perception/physiology , Visual Cortex/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Visual Cortex/diagnostic imaging , Young Adult
17.
Proc Natl Acad Sci U S A ; 116(24): 11687-11692, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31138705

ABSTRACT

What determines where we look? Theories of attentional guidance hold that image features and task demands govern fixation behavior, while differences between observers are interpreted as a "noise-ceiling" that strictly limits predictability of fixations. However, recent twin studies suggest a genetic basis of gaze-trace similarity for a given stimulus. This leads to the question of how individuals differ in their gaze behavior and what may explain these differences. Here, we investigated the fixations of >100 human adults freely viewing a large set of complex scenes containing thousands of semantically annotated objects. We found systematic individual differences in fixation frequencies along six semantic stimulus dimensions. These differences were large (>twofold) and highly stable across images and time. Surprisingly, they also held for first fixations directed toward each image, commonly interpreted as "bottom-up" visual salience. Their perceptual relevance was documented by a correlation between individual face salience and face recognition skills. The set of reliable individual salience dimensions and their covariance pattern replicated across samples from three different countries, suggesting they reflect fundamental biological mechanisms of attention. Our findings show stable individual differences in salience along a set of fundamental semantic dimensions and that these differences have meaningful perceptual implications. Visual salience reflects features of the observer as well as the image.


Subject(s)
Fixation, Ocular/physiology , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Adult , Attention/physiology , Eye Movements/physiology , Face/physiology , Facial Recognition/physiology , Female , Humans , Individuality , Male , Photic Stimulation/methods , Semantics
18.
Cortex ; 113: 350-351, 2019 04.
Article in English | MEDLINE | ID: mdl-30638585
19.
F1000Res ; 8: 1681, 2019.
Article in English | MEDLINE | ID: mdl-31885863

ABSTRACT

Background: Population receptive field (pRF) analysis with functional magnetic resonance imaging (fMRI) is an increasingly popular method for mapping visual field representations and estimating the spatial selectivity of voxels in human visual cortex. However, the multitude of experimental setups and processing methods used makes comparisons of results between studies difficult. Methods: Here, we compared pRF maps acquired in the same three individuals using comparable scanning parameters on a 1.5 and a 3 Tesla scanner located in two different countries. We also tested the effect of low-pass filtering of the time series on pRF estimates. Results: As expected, the signal-to-noise ratio for the 3 Tesla data was superior; critically, however, estimates of pRF size and cortical magnification did not reveal any systematic differences between the sites. Unsurprisingly, low-pass filtering enhanced goodness-of-fit, presumably by removing high-frequency noise. However, there was no substantial increase in the number of voxels containing meaningful retinotopic signals after low-pass filtering. Importantly, filtering also increased estimates of pRF size in the early visual areas which could substantially skew interpretations of spatial tuning properties. Conclusion: Our results therefore suggest that pRF estimates are generally comparable between scanners of different field strengths, but temporal filtering should be used with caution.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Visual Cortex , Adult , Female , Humans , Neuroimaging
20.
Front Psychol ; 9: 1722, 2018.
Article in English | MEDLINE | ID: mdl-30374315

ABSTRACT

Lesions of primary visual cortex or its primary inputs typically result in retinotopically localized scotomas. Here we present an individual with unexplained visual field loss and deficits in visual perception in the absence of structural damage to the early visual pathway or lesions in visual cortex. The subject, monocular from an early age, underwent repeated perimetry tests over 8 years demonstrating severe anopia of the lower hemifield, and a clockwise progression of the loss through her upper left visual field. Her visual impairment was evident in a number of standardized tests and psychophysics, especially in tasks assessing spatial integration using illusory contours. However, her intellectual ability was intact and her performance in some other tasks assessing color vision or object detection in scenes was normal. We employed functional magnetic resonance imaging (fMRI), electroretinography and visually evoked potentials. Surprisingly, in contrast to the participant's severe anopia, we found no evidence of abnormal function of her early visual pathways. Specifically, we performed retinotopic mapping using population receptive field (pRF) analysis to map the functional organization of visual cortex in the anopic participant and three control participants on two occasions three and a half years apart. Despite the behavioral visual field loss, her retinotopic maps and pRF parameters in visual areas V1-V3 were qualitatively normal. Further behavioral experiments confirmed that this discrepancy was not trivially explained by the difference between stimuli used for retinotopic mapping and perimetry. Structural T1 scans were normal at both time points, and volumetric analysis of white and gray matter tissue on the segmented T1 volumes did not reveal any abnormalities or deterioration over time. Our findings suggest that normal functional organization of early visual cortex without evident structural damage to the early visual pathway as disclosed by the techniques employed in this study does not necessarily guarantee conscious perception across the visual field.

SELECTION OF CITATIONS
SEARCH DETAIL
...