Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 35(1): 87-93, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22405908

ABSTRACT

A real-time, label free assay was developed for microbial detection, utilizing double-stranded DNA targets and employing the next generation of an impedimetric sensor array platform designed by Sharp Laboratories of America (SLA). Real-time curves of the impedimetric signal response were obtained at fixed frequency and voltage for target binding to oligonucleotide probes attached to the sensor array surface. Kinetic parameters of these curves were analyzed by the integrated data analysis package for signal quantification. Non-specific binding presented a major challenge for assay development, and required assay optimization. For this, differences were maximized between binding curve kinetic parameters for probes binding to complementary targets versus non-target controls. Variables manipulated for assay optimization included target concentration, hybridization temperature, buffer concentration, and the use of surfactants. Our results showed that (i) different target-probe combinations required optimization of specific sets of variables; (ii) for each assay condition, the optimum range was relatively narrow, and had to be determined empirically; and (iii) outside of the optimum range, the assay could not distinguish between specific and non-specific binding. For each target-probe combination evaluated, conditions resulting in good separation between specific and non-specific binding signals were established, generating high confidence in the SLA impedimetric dsDNA assay results.


Subject(s)
Biosensing Techniques/methods , DNA, Bacterial/analysis , Microbiological Techniques/methods , Bacteriological Techniques/instrumentation , Bacteriological Techniques/methods , Bacteriological Techniques/statistics & numerical data , Base Sequence , Biosensing Techniques/instrumentation , Biosensing Techniques/statistics & numerical data , Computer Systems , DNA, Bacterial/genetics , Data Interpretation, Statistical , Electric Impedance , Equipment Reuse , Escherichia coli/genetics , Escherichia coli/isolation & purification , Genes, Bacterial , Microbiological Techniques/instrumentation , Microbiological Techniques/statistics & numerical data , Polymerase Chain Reaction
2.
Biosens Bioelectron ; 22(9-10): 1853-60, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-16891109

ABSTRACT

Electrochemical detection has been developed and assay performances studied for the CombiMatrix oligonucleotide microarray platform that contains 12,544 individually addressable microelectrodes (features) in a semiconductor matrix. The approach is based on the detection of redox active chemistries (such as horseradish peroxidase (HRP) and the associated substrate TMB) proximal to specific microarray electrodes. First, microarray probes are hybridized to biotin-labeled targets, second, the HRP-streptavidin conjugate binds to biotin, and enzymatic oxidation of the electron donor substrate then occurs. The detection current is generated due to electro-reduction of the HRP reaction product, and it is measured with the CombiMatrix ElectraSense Reader. Performance of the ElectraSense platform has been characterized using gene expression and genotyping assays to analyze: (i) signal to concentration dependence, (ii) assay resolution, (iii) coefficients of variation, (CV) and (iv) array-to-array reproducibility and data correlation. The ElectraSense platform was also compared to the standard fluorescent detection, and good consistency was observed between these two different detection techniques. A lower detection limit of 0.75 pM was obtained for ElectraSense as compared to the detection limit of 1.5 pM obtained for fluorescent detection. Thus, the ElectraSense platform has been used to develop nucleic acid assays for highly accurate genotyping of a variety of pathogens including bio-threat agents (such as Bacillus anthracis, Yersinia pestis, and other microorganisms including Escherichia coli, Bacillus subtilis, etc.) and common pathogens of the respiratory tract (e.g. influenza A virus).


Subject(s)
Electrochemistry , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Bacteriophage lambda/genetics , Electrochemistry/instrumentation , Gene Expression Profiling/instrumentation , Genotype , Humans , Oligonucleotide Array Sequence Analysis/instrumentation
3.
J Biochem Biophys Methods ; 59(2): 181-7, 2004 May 31.
Article in English | MEDLINE | ID: mdl-15163529

ABSTRACT

A CMOS fabricated silicon microchip was used as a platform for immunoassays and DNA synthesis and hybridization. The chip is covered with a biofriendly matrix wherein the chemistries occur. The active silicon chip has over 1000 active electrodes that can be individually addressed for both synthesis of DNA and protein attachment to a membrane on the chip surface. Additionally, the active chip can be further used for the detection of various analytes at the chip surface via digital read out resulting from the redox enzymes on the captured oligonucleotide or antibody.


Subject(s)
DNA/analysis , DNA/genetics , Horseradish Peroxidase/metabolism , Immunoassay/methods , Oligonucleotide Array Sequence Analysis/methods , Bacteriophages/immunology , Bacteriophages/isolation & purification , Electrochemistry , Electrodes , Humans , Immunoassay/instrumentation , Light , Oligonucleotide Array Sequence Analysis/instrumentation , Orosomucoid/analysis , Orosomucoid/immunology , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...